Combinatorics of finite geometries
Author(s)
Bibliographic Information
Combinatorics of finite geometries
Cambridge University Press, 1997
2nd ed
- : pbk
Available at 40 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and indexes
Description and Table of Contents
Description
This book is an introductory text on the combinatorial theory of finite geometry. It assumes only a basic knowledge of set theory and analysis, but soon leads the student to results at the frontiers of research. It begins with an elementary combinatorial approach to finite geometries based on finite sets of points and lines, and moves into the classical work on affine and projective planes. The next part deals with polar spaces, partial geometries, and generalised quadrangles. The revised edition contains an entirely new chapter on blocking sets in linear spaces, which highlights some of the most important applications of blocking sets from the initial game-theoretic setting to their recent use in cryptography. Extensive exercises at the end of each chapter ensure the usefulness of this book for senior undergraduate and beginning graduate students.
Table of Contents
- Preface
- Preface to the first edition
- 1. Near-linear spaces
- 2. Linear spaces
- 3. Projective spaces
- 4. Affine spaces
- 5. Polar spaces
- 6. Generalized quadrangles
- 7. Partial geometries
- 8. Blocking sets
- Bibliography
- Index of notation
- Subject index.
by "Nielsen BookData"