Submodular functions and electrical networks
Author(s)
Bibliographic Information
Submodular functions and electrical networks
(Annals of discrete mathematics, 54)
Elsevier, 1997
- : hard
Available at 22 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields.Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks.The book contains:* a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators)* a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions.In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter.The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs.The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.
Table of Contents
Mathematical Preliminaries. Sets. Vectors and matrices. Linear inequality systems. Graphs. Graphs: basic notions. Graphs and vector spaces. Basic operations on graphs and vector spaces. Problems. Graph algorithms. Duality. Notes. Matroids. Axiom systems for matroids. Dual of a matroid. Minors of matroids. Connectedness in matroids. Matroids and the greedy algorithm. Notes. Electrical Networks. In terms of multiterminal devices. In terms of 2-terminal devices. Standard devices. Common methods of analysis. Procedures used in circuit simulators. State equations for dynamic networks. Multiports in electrical networks. Some elementary results of network theory. Notes. Topological Hybrid Analysis. Electrical network: a formal description. Some basic topological results. A theorem on topological hybrid analysis. Structure of constraints and optimization. Notes. The Implicit Duality Theorem and its Applications. The vector space version. Quasi orthogonality. Applications of the implicit duality theorem. Linear inequality systems. Integrality systems. Problems. Notes. Multiport Decomposition. Multiport decomposition of vector spaces. Analysis through multiport decomposition. Port minimization. Multiport decomposition for network reduction. Problems. Submodular Functions. Submodularity. Basic operations on semimodular functions. Other operations on semimodular functions. Polymatroid and matroid rank functions. Connectedness for semimodular functions. Semimodular polyhedra. Symmetric submodular functions. Problems. Notes. Convolution of Submodular Functions. Convolution. Matroids, polymatroids and convolution. The principal partition. The refined partial order of the principal partition. Algorithms for PP. Aligned polymatroid rank functions. Notes. Matroid Union. Submodular functions induced through a bipartite graph. Matroid union: algorithm and structure. PP of the rank function of a matroid. Notes. Dilworth Truncation of Submodular Functions. Dilworth truncation. The principal lattice of partitions. Approximation algorithms through PLP for the min cost partition problem. The PLP of duals and truncations. The principal lattice of partitions associated with special fusions. Building submodular functions with desired PLP. Notes. Algorithms for the PLP of a Submodular Function. Minimizing the partition associate of a submodular function. Construction of the P-sequence of partitions. Construction of the DTL. Complexity of construction of the PLP. Construction of the PLP of the dual. PLP algorithms for ( R )( ) and -( R L)( ). Structural changes in minimizing partitions. Relation between PP and PLP. Fast algorithms for principal partition of the rank function of a graph. The Hybrid Rank Problem. The hybrid rank problem - first formulation. The hybrid rank problem - second formulation. The hybrid rank problem - third formulation. The hybrid rank problem - fourth formulation.
by "Nielsen BookData"