Computation of atomic processes : a handbook for the ATOM programs

Author(s)
Bibliographic Information

Computation of atomic processes : a handbook for the ATOM programs

M. Ya. Amusia and L.V. Chernysheva

Institute of Physics Pub., c1997

  • : hard

Search this Book/Journal
Note

Includes bibliographical references and index

Description and Table of Contents

Description

This text and software package contains many of the formulae needed for researchers to compute atomic processes, including photoionization, Auger and radiative decay, elastic scattering and ionization. The calculations are set within the Hartree-Fock approximation and its generalization to the random phase approximation with exchange. The results of calculations can be used to solve a wide range of physical problems, from atomic strucutre to cross sections of collision processes. The text explains how to use the ATOM programs, the software for which is written in FORTRAN and may be used on VAX or UNIX-based machines. The programs each consider a different range of variables. The organization of the text and software is designed to help the user calculate what they need to as easily as possible. It is a unique compendium of information for those researching atomic properties and processes, in particular for those working in computational physics. It will be useful to those working in atomic and molecular physics, astrophysics, radiation physics, plasma physics, and solid state physics to obtain accurate information about atomic structure.

Table of Contents

Overview. Essential physics of the ATOM system. Mathematical description of atomic properties. Radial self-consistent Hartree-Fock-Dirac equations. Radial Hartree-Fock equation for the frozen core. The choice of wave functions. The coefficients in the Hartree-Fock equation. Photoionization, oscillator strengths and polarizability. Generalized oscillator strengths. Electron impact ionization. Generalized oscillator strengths with PCI. Inner-shell photoionization with PCI. Near-threshold ionization. Self-energy part of the one-particle Green function. Scattering phases and electron wavefunctions taking account of the self-energy part. The Auger-decay widths of atomic levels. Probability of double Auger decay. One-photon decay of two-hole states. Electron-induced triplet level excitation. High-energy projectile Bremsstrahlung. Intermediate energy Bremsstrahlung. The photoabsorption cross-section. The features of muon capture. The structure of the ATOM system. Results of Calculations.

by "Nielsen BookData"

Details
  • NCID
    BA32521619
  • ISBN
    • 0750302291
  • LCCN
    97009082
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Original Language Code
    rus
  • Place of Publication
    Bristol
  • Pages/Volumes
    xiv, 253 p.
  • Size
    24 cm.
  • Attached Material
    1 computer disk (3 1/2 in.)
  • Classification
  • Subject Headings
Page Top