Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
Author(s)
Bibliographic Information
Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
(Applied mathematical sciences, v. 42)
Springer-Verlag, 1997, c1983
Corrected 5th print
- : us
- : gw
Related Bibliography 3 items
Available at 34 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Preface to the fifth printing -- p. xiii
Bibliography: p. [437]-454
Includes index
Description and Table of Contents
- Volume
-
: us ISBN 9780387908199
Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Table of Contents
Chapter 1: Introduction: Differential Equations and Dynamical Systems * Chapter 2: An Introduction to Chaos: Four Examples * Chapter 3: Local Bifurcations * Chapter 4: Averaging and Perturbation from a Geometric Viewpoint * Chapter 5: Hyperbolic Sets, Symbolic Dynamics, and Strange Attractors * Chapter 6: Global Bifurcations * Chapter 7: Local Codimension Two Bifurcations of Flows * Appendix * Suggestions for Further Reading * Postscript Added at Second Printing * Glossary * References * Index
- Volume
-
: gw ISBN 9783540908197
Description
This volume applies the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking the cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help the reader develop an intuitive feel for the properties involved. In this fifth printing the authors have corrected further errors, oversights and updates.
Table of Contents
Contents: Introduction: Differential Equations and Dynamical Systems.- An Introduction to Chaos: Four Examples.- Local Bifurcations.- Averaging and Perturbation from a Geometric Viewpoint.- Hyperbolic Sets, Sympolic Dynamics, and Strange Attractors.- Global Bifurcations.- Local Codimension Two Bifurcations of Flows.- Appendix: Suggestions for Further Reading. Postscript Added at Second Printing. Glossary. References. Index.
by "Nielsen BookData"