Computational solution of large-scale macroeconometric models
著者
書誌事項
Computational solution of large-scale macroeconometric models
(Advances in computational economics, v. 7)
Kluwer Academic Publishers, c1997
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [145]-151) and index
内容説明・目次
内容説明
This book is the result of my doctoral dissertation research at the Department of Econometrics of the University of Geneva, Switzerland. This research was also partially financed by the Swiss National Science Foundation (grants 12- 31072.91 and 12-40300.94). First and foremost, I wish to express my deepest gratitude to Professor Manfred Gilli, my thesis supervisor, for his constant support and help. I would also like to thank the president of my jury, Professor Fabrizio Carlevaro, as well as the other members of the jury, Professor Andrew Hughes Hallett, Professor Jean-Philippe Vial and Professor Gerhard Wanner. I am grateful to my colleagues and friends of the Departement of Econometrics, especially David Miceli who provided constant help and kind understanding during all the stages of my research. I would also like to thank Pascale Mignon for proofreading my text and im proving my English. Finally, I am greatly indebted to my parents for their kindness and encourage ments without which I could never have achieved my goals. Giorgio Pauletto Department of Econometrics, University of Geneva, Geneva, Switzerland Chapter 1 Introduction The purpose of this book is to present the available methodologies for the solution of large-scale macroeconometric models. This work reviews classical solution methods and introduces more recent techniques, such as parallel com puting and nonstationary iterative algorithms.
目次
Preface. 1: Introduction. 2: A Review of Solution Techniques. 2.1. LU Factorization. 2.2. QR Factorization. 2.3. Direct Methods for Sparse Matrices. 2.4. Stationary Iterative Methods. 2.5. Nonstationary Iterative Methods. 2.6. Newton Methods. 2.7. Finite Difference Newton Method. 2.8. Simplified Newton Method. 2.9. Quasi-Newton Methods. 2.10. Nonlinear First-Order Methods. 2.11. Solution by Minimization. 2.12. Globally Convergent Methods. 2.13. Stopping Criteria and Scaling. 3: Solution of Large-Scale Macroeconometric Models. 3.1. Block Triangular Decomposition of the Jacobian Matrix. 3.2. Orderings of the Jacobian Matrix. 3.3. Point Methods versus Block Methods. 3.4. Essential Feedback Vertex Sets and the Newton Method. 4: Model Simulation on Parallel Computers. 4.1. Introduction to Parallel Computing. 4.2. Model Simulation Experiences. 5: Rational Expectations Models. 5.1. Introduction. 5.2. The Model MULTIMOD. 5.3. Solution Techniques for Forward-Looking Models. A: Appendix. A.1. Finite Precision Arithmetic. A.2. Condition of a Problem. A.3. Complexity of Algorithms. Index.
「Nielsen BookData」 より