Locally conformal Kähler geometry
Author(s)
Bibliographic Information
Locally conformal Kähler geometry
(Progress in mathematics, vol. 155)
Birkhäuser, c1998
- us
- gw
Available at 73 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [307]-327)
Description and Table of Contents
- Volume
-
us ISBN 9780817640200
Description
. E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
Table of Contents
-3c2.- 10.2.2 An almost Hermitian submersion with total space R2n-1(c) x R.- 10.2.3 An almost Hermitian submersion with total space (R x Bn-1)(c, k) x R, k < -3c2.- 10.3 Compact total space.- 10.4 Total space a g.H. manifold.- 11 L.c. hyperKahler manifolds.- 12 Submanifolds.- 12.1 Fundamental tensors.- 12.2 Complex and CR submanifolds.- 12.3 Anti-invariant submanifolds.- 12.4 Examples.- 12.5 Distributions on submanifolds.- 12.6 Totally umbilical submanifolds.- 13 Extrinsic spheres.- 13.1 Curvature-invariant submanifolds.- 13.2 Extrinsic and standard spheres.- 13.3 Complete intersections.- 13.4 Yano's integral formula.- 14 Real hypersurfaces.- 14.1 Principal curvatures.- 14.2 Quasi-Einstein hypersurfaces.- 14.3 Homogeneous hypersurfaces.- 14.4 Type numbers.- 14.5 L. c. cosymplectic metrics.- 15 Complex submanifolds.- 15.1 Quasi-Einstein submanifolds.- 15.2 The normal bundle.- 15.3 L.c.K. and Kahler submanifolds.- 15.4 A Frankel type theorem.- 15.5 Planar geodesic immersions.- 16 Integral formulae.- 16.1 Hopf fibrations.- 16.2 The horizontal lifting technique.- 16.3 The main result.- 17 Miscellanea.- 17.1 Parallel IInd fundamental form.- 17.2 Stability.- 17.3 f-Structures.- 17.4 Parallel f-structure P.- 17.5 Sectional curvature.- 17.6 L. c. cosymplectic structures.- 17.7 Chen's class.- 17.8 Geodesic symmetries.- 17.9 Submersed CR submanifolds.- A Boothby-Wang fibrations.- B Riemannian submersions.
- Volume
-
gw ISBN 9783764340209
Description
This monograph covers topics in complex geometry, written by two experts in this field.
Table of Contents
- L.c.K manifolds
- fundamental properties
- examples
- generalized Hopf manifolds
- distributions on a g.H. manifold
- structure theorems
- harmonic and holomorphic forms
- hermitian surfaces
- holomorphic maps
- L.c.K. submersions
- L.c. formulae
- miscellanea
- A. Boothby-Wang fibrations
- B. Riemannian submersions.
by "Nielsen BookData"