Introduction to mathematical systems theory : a behavioral approach
著者
書誌事項
Introduction to mathematical systems theory : a behavioral approach
(Texts in applied mathematics, 26)
Springer, c1998
大学図書館所蔵 全60件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p.[415]-418) and index
内容説明・目次
内容説明
This is a book about modelling, analysis and control of linear time- invariant systems. The book uses what is called the behavioral approach towards mathematical modelling. Thus a system is viewed as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. In the first part of the book the structure of the set of trajectories that such dynamical systems generate is analyzed. Conditions are obtained for two systems of differential equations to be equivalent in the sense that they define the same behavior. It is further shown that the trajectories of such linear differential systems can be partitioned in free inputs and bound outputs. In addition the memory structure of the system is analyzed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. An essential feature of using the behavioral approach is that it allows these and similar concepts to be introduced in a representation-free manner.
In the third part control problems are considered, more specifically stabilization and pole placement questions. This text is suitable for advanced undergraduate or beginning graduate students in mathematics and engineering. It contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.
目次
Preface 1. Dynamical Systems 1.1 Introduction 1.2 Models 1.2.1 The universum and the behavior 1.2.2 Behavioral equations 1.2.3 Latent variables 1.3 Dynamical systems 1.3.1 The basic concept 1.3.2 Latent variables in dynamical systems 1.4 Linearity and time-invariance 1.5 Dynamical behavioral equations 1.6 Recapitulation 1.7 Notes and references 1.8 Exercises 2. Systems defined by Linear Differential Equations 2.1 Introduction 2.2 Notation
「Nielsen BookData」 より