Characters of finite groups
Author(s)
Bibliographic Information
Characters of finite groups
(Translations of mathematical monographs, v. 172,
American Mathematical Society, c1998-c1999
- pt. 1
- pt. 2
- Other Title
-
Teorii︠a︡ kharakterov
Теория характеров
Available at 59 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
pt. 1410.8//TR1//523115100116647,15100116654,15100118460,15100129913,
pt. 2410.8//TR1//884815100140795,15100141611,15100146651,15100188489 -
Library & Science Information Center, Osaka Prefecture University
pt. 13000063022,
pt. 23000063023
Note
"Translated by P. Shumyatsky and V. Zobina from the original Russian manuscript ; translation edited by David Louvish" -- T.p. verso
Includes bibliographical references and indexes
Description and Table of Contents
Description
This book places character theory and its applications to finite groups within the reach of people with a comparatively modest mathematical background. The work concentrates mostly on applications of character theory to finite groups. The main themes are degrees and kernels of irreducible characters, the class number and the number of nonlinear irreducible characters, values of irreducible characters, characterizations and generalizations of Frobenius groups, and generalizations of monomial groups. The presentation is detailed, and many proofs of known results are new.
Table of Contents
Degrees and kernels of irreducible characters Involutions Connectedness and Zassenhaus groups The Nagao theorem Linear groups Permutation characters Characters of SL$(2,p^n)$ Zeros of characters The Schur index On degrees of irreducible components of induced characters Groups in which only two nonlinear irreducible characters have equal degrees Groups with small sums of degrees of some characters On sums of degrees of irreducible characters Groups whose nonlinear irreducible characters take three distinct values Nonsolvable groups with many involutions On kernels of nonlinear irreducible characters On monolithic characters The class number Problems Notes on the bibliography Bibliography Author index Subject index List of corrections to part 1.
by "Nielsen BookData"