EUROSHOCK - Drag reduction by passive shock control : Results of the project EUROSHOCK, AER2-CT92-0049 ; Supported by the European Union 1993-1995

書誌事項

EUROSHOCK - Drag reduction by passive shock control : Results of the project EUROSHOCK, AER2-CT92-0049 ; Supported by the European Union 1993-1995

edited by Egon Stanewsky ...[et al.]

(Notes on numerical fluid mechanics, v. 56)

Vieweg, c1997

大学図書館所蔵 件 / 8

この図書・雑誌をさがす

注記

Includes bibliographies

内容説明・目次

内容説明

This volume contains the description of an EC-sponsered program to study all relevant aspects of shock/ boundary-layer interaction control, the latter designed to improve aircraft performance at design (cruise) and off-design conditions. The work being presented includes a discussion of basic control experiments and the corresponding physical modeling, to account for shock control and a discussion of the airfoil experiments conducted for code validation and control assessment, in conjunction with the basic experiments and computations. The contents is comprised of a section giving a broad overview of the research carried out here and more detailed individual contributions by the participants in the research. Der Band enthalt den Abschlussbericht eines von EU geforderten Projekts EUROSHOCK, das alle relevanten Aspekte der Kontrolle von Stossfronten und Grenzschichten (wichtig z.B. fur die Verbesserung der Flugeigenschaften von Fluzeugen) untersuchte. Neben einer ausfuhrlichen Diskussion der grundlegenden Kontrollexperimente und der zugrundeliegenden Modellierung werden auch die Versuche an Tragflachen beschrieben, die zur Validierung von Modellrechnungen durchgefuhrt werden. Daruber hinaus enthalt der Band auch die detaillierten Ergebnisse der Teilnehmer an dem Forschungsprogramm.

目次

A. Synopsis of the Project EUROSHOCK.- 1 Introduction.- 2 Basic Experiments and Physical Modeling.- 2.1 Two-dimensional Shock Control.- 2.1.1 Test set-up for the basic experiments.- 2.1.2 The perforated plates.- 2.1.3 Effect of plate geometry on shock control effectiveness.- 2.1.4 Boundary layer development over the cavity region.- 2.1.5 Assessment of turbulence models and shock control laws.- 2.2 Three-dimensional Shock Control.- 2.2.1 Experimental arrangement and procedure.- 2.2.2 Analysis of experimental results.- 2.2.3 Numerical simulation of the interaction.- 2.3 Conclusion and Future Work.- 3 Extension of Numerical Methods and Preliminary Control Assessment.- 3.1 Basic Numerical Methods.- 3.2 Pre-computations without Control.- 3.2.1 Steady flow pre-computations for the airfoil DA LVA-1A.- 3.2.2 Unsteady flow pre-computations.- 3.3 Extension of the Numerical Codes to Shock Control.- 3.4 Computational Results for Airfoil Flow with Control.- 3.4.1 Airfoil DRA 2303 - steady flow conditions.- 3.4.2 Airfoil DRA 2303 - unsteady flow conditions.- 3.4.3 Airfoil DA LVA-1A with and without control.- 3.4.4 Airfoil VA-2 with passive and active control.- 3.5 Conclusion and Future Work.- 4 Airfoil Tests with and without Control.- 4.1 Experimental Program.- 4.2 Experiments with the Airfoil DA LVA-1A.- 4.2.1 Airfoil characteristics and wind tunnel model.- 4.2.2 Wind tunnel characteristics.- 4.2.3 Discussion of T2 results.- 4.2.4 Discussion of KRG results.- 4.3 Experiments with the Airfoil DRA 2303.- 4.3.1 Airfoil characteristics and wind tunnel model.- 4.3.2 Wind tunnel characteristics.- 4.3.3 Discussion of steady results.- 4.3.4 Control effect on buffet.- 4.4 Experiments with the Airfoil VA-2.- 4.4.1 Airfoil characteristics and wind tunnel model.- 4.4.2 Wind tunnel characteristics.- 4.4.3 Comparison of present and earlier results.- 4.4.4 Effect of passive and active control.- 4.5 Conclusion and Future Work.- 5 Assessment of Shock Control - A Summary.- 6 Overall Conclusion and Future Work.- 7 References.- B Individual Contribution.- 8 Introduction to the Individual Contributions.- 9 Basic Study of Passive Control Applied to a Two-dimensional Transonic Interaction.- 9.1 Introduction.- 9.2 Experimental Conditions.- 9.2.1 Test set-up arrangement.- 9.2.2 Techniques of investigation and data processing.- 9.2.3 Configurations tested.- 9.3 Experimental Results.- 9.3.1 Flow visualizations.- 9.3.2 Surface pressure distributions.- 9.3.3 Mean flow field properties.- 9.3.4 Turbulent field properties.- 9.3.5 Total drag coefficient in the control region.- 9.3.6 Perforated plates excrescence drag.- 9.4 Theoretical Study.- 9.4.1 Numerical approach.- 9.4.2 Surface pressure distributions.- 9.4.3 Transpiration velocity distributions.- 9.5 Conclusion.- 9.6 References.- 10 Passive Control of Shock Wave - Boundary Layer Interaction and Porous Plate Transpiration Flow.- 10.1 Introduction.- 10.2 Porous Plate Flow.- 10.2.1 Measurements.- 10.2.2 Effective flow within a hole and pressure drop through the porous plate.- 10.2.3 Implementation of the porous plate flow model.- 10.3 Experimental Investigation of Shock Boundary Layer Interaction with Passive Control.- 10.3.1 Introduction.- 10.3.2 Mach number at the wall.- 10.3.3 Boundary layer profiles without passive control.- 10.3.4 Passive control effect.- 10.4 Numerical Simulation of SBLIC.- 10.4.1 Numerical code.- 10.4.2 Results.- 10.5 References.- 11 An Investigation of Passive Control Applied to Swept Shock-Wave/Boundary Layer Interactions.- 11.1 Introduction.- 11.2 Experimental Apparatus.- 11.3 Computational Method.- 11.4 Results and Discussion.- 11.4.1 Interaction without passive control.- 11.4.2 Interaction with passive control.- 11.5 Conclusions.- 11.6 References.- 12 Numerical Investigation of the Passive Shock Control on Transonic Airfoils Through an Euler/Boundary-Layer Coupling Technique.- 12.1 Introduction.- 12.2 Extension of the EUBL2D Method to Passive Shock Control Calculations.- 12.3 Calculation of the Transpiration Velocity.- 12.4 Numerical Results.- 12.4.1 Validation of the method.- 12.4.2 Numerical assessment of passive control.- 12.5 Conclusions.- 12.6 References.- 13 Introduction of Passive Shock Control in an Interactive Boundary Layer Method.- 13.1 Introduction.- 13.2 Inviscid Flow Solver.- 13.3 Viscous Solver.- 13.4 Transpiration Model.- 13.5 Design of the Cavity Location.- 13.6 Calculation of Total Drag.- 13.7 Wake Effect.- 13.8 Results.- 13.8.1 Block decomposition and LGR concept.- 13.8.2 New correlation for a ventilated boundary layer.- 13.8.3 Test cases for the airfoil DRA 2303 with and without control.- 13.8.4 Test cases for the airfoil DA-LVA-1A with and without control.- 13.8.5 Test cases for the airfoil VA-2 with and without control.- 13.8.6 Test case for the VA-2 airfoil at 0.75 < C1 < 0.85 with and without control: a summary.- 13.9 Conclusion.- 13.10 References.- 14 Extension, Validation and Application of the DA VII Transonic Airfoil Code with Passive Shock Control.- 14.1 Introduction.- 14.2 Basic Airfoil Flow Prediction Method.- 14.2.1 Equivalent inviscid flow and viscous boundary conditions.- 14.2.2 Interactive boundary layer and coupling method.- 14.2.3 Forces.- 14.3 Extension of the VII Method to Passive Shock Control.- 14.3.1 SC Law procedure.- 14.3.2 Modifications of the viscous solver.- 14.3.3 Modification of the solution procedure.- 14.3.4 Grid adaptation.- 14.4 Validation of the Numerical Results.- 14.4.1 DRA 2303 airfoil.- 14.4.2 MBB Va 2 airfoil.- 14.4.3 DA LVA-1A airfoil.- 14.5 Parametric Study of the SC Design Parameters.- 14.5.1 Porosity.- 14.5.2 Perforation location.- 14.5.3 Perforation length.- 14.6 Conclusion.- 14.7 References.- 14.8 List of Symbols.- 15 Development of Viscous-Inviscid Interaction Codes for Prediction of Shock Boundary-Layer Interaction Control and Buffet over Airfoils.- 15.1 Introduction.- 15.2 Viscous-Inviscid Interaction (VII) Numerical Methods.- 15.2.1 Steady code VIS05c (VII + Full Potential).- 15.2.2 Unsteady code VIS15 (VII + TSP, time-consistent coupling).- 15.2.3 Self-adaptive grids of codes VIS05 and VIS15.- 15.3 Shock-control Extension in Codes VIS05c and VIS15.- 15.3.1 Implementation of a velocity at the wall.- 15.3.2 Control laws.- 15.3.3 Isentropic law.- 15.3.4 Poll's formula.- 15.3.5 Active or passive shock-control.- 15.4 Computation of Steady Test-cases.- 15.4.1 Pre-calculations: DA-LVA-1A airfoil without control.- 15.4.2 DRA-2303 airfoil with/without control.- 15.4.3 VA2 airfoil with/without control.- 15.4.4 DA-LVA-1A airfoil with/without control.- 15.5 Computation of the Unsteady Test-cases.- 15.5.1 NLR7301 airfoil without control: Buffet test-cases.- 15.5.2 NACA0012 airfoil without control: Severe buffet test-case.- 15.5.3 DRA-2303 airfoil with/without control: Damping of buffet.- 15.6 Conclusion.- 15.7 References.- 16 Transonic Airfoil Flow Prediction with Shock Boundary Layer Interaction Control by a Time-accurate Navier-Stokes Code.- 16.1 Introduction.- 16.2 Numerical Method.- 16.2.1 2D Time-accurate Navier-Stokes code.- 16.2.2 Implementation of shock control laws.- 16.2.3 Modification of turbulence model.- 16.3 Airfoils and Test Cases.- 16.4 Results.- 16.4.1 Steady flow.- 16.4.2 Unsteady flow, buffet.- 16.5 Final Discussion of Results.- 16.5.1 Steady results.- 16.5.2 Unsteady results.- 16.6 Conclusions and Future Activities.- 16.7 References.- 17 Shock Boundary Layer Interaction Control Predictions Using a Viscous-Inviscid Interaction Procedure and a Navier-Stokes Solver.- 17.1 Introduction.- 17.2 Numerical Procedures.- 17.2.1 Viscous-inviscid interaction procedure.- 17.2.2 Navier-Stokes approach.- 17.2.3 Shock control laws.- 17.3 Results and Discussion.- 17.3.1 Viscous-inviscid interaction results.- 17.3.2 Navier-Stokes results.- 17.4 Conclusion.- 17.5 References.- 18 Computation of Transonic Flows Applying Shock Boundary Layer Interaction Control.- 18.1 Introduction.- 18.2 Basic Principles of Passive Control.- 18.3 Computational Method.- 18.3.1 The ULTRAN-V method.- 18.3.2 Extension of ULTRA-V to control.- 18.3.3 Control laws.- 18.3.4 Implementation of the control laws.- 18.4 Numerical Results.- 18.4.1 Steady flow predictions.- 18.4.2 Unsteady flow predictions.- 18.5 Conclusions.- 18.6 Acknowledgment.- 18.7 References.- 19 Design and Manufacture of the Cryogenic Laminar-type Airfoil DA LVA-1A with Passive Shock Control.- 19.1 Introduction.- 19.2 Basic Airfoil DA LVA-1A Characteristics.- 19.2.1 Airfoil design.- 19.2.2 Reference measurements without shock control.- 19.3 Cryogenic Model Design / Manufacture.- 19.3.1 ONERA-T2 / DLR-KRG requirements.- 19.3.2 Model construction / manufacture.- 19.3.3 Model equipment.- 19.4 Design / Manufacture of the Passive Shock Control Inserts.- 19.4.1 Aerodynamic insert design parameters.- 19.4.2 Insert construction / manufacture / equipment.- 19.4.3 Perforation technique / check out procedure.- 19.4.4 Actual insert perforation / calibration tests.- 19.5 Conclusions.- 19.6 References.- 20 Qualification by Laser Measurements of the Passive Control on the LVA-1A Airfoil in the T2 Wind Tunnel.- 20.1 Introduction.- 20.2 Experimental Set-up and Measurement Characteristics.- 20.2.1 The T2 wind tunnel.- 20.2.2 LVA-1Ae model.- 20.3 Measurements.- 20.4 Test Conditions.- 20.5 Experimental Data.- 20.5.1 Determination of the nominal Mach number.- 20.5.2 Incidence variation at M = 0.77.- 20.5.3 Laser measurements.- 20.6. Conclusions.- 20.7 Table of Results.- 20.8 List of Symbols.- 20.9 References.- 21 Experimental Investigation of the Transonic Airfoils DA LVA-1A and VA-2 with Shock Control.- 21.1 Introduction.- 21.2 Investigation of the Laminar-type Airfoil DA LVA-1Ae with Passive Control at Reynolds Numbers of 4.6 x 106 ? Re ? 12 x 106.- 21.2.1 The Cryogenic Ludwieg-tube.- 21.2.2 Model and test conditions.- 21.2.3 Experimental results.- 21.3 Investigation of the Turbulent Airfoil VA-2 with Passive and Active Control.- 21.3.1 VA-2 airfoil model and instrumentation.- 21.3.2 Wind tunnel.- 21.3.3 Test conditions.- 21.3.4 Analysis and discussion of results.- 21.4 Conclusions.- 21.5 Nomenclature.- 21.6 References.- 22 An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil.- 22.1 Introduction.- 22.2 Model Details and Measurements.- 22.2.1 The model.- 22.2.2 Measurements.- 22.2.3 Boundary-layer transition trips.- 22.2.4 Test conditions.- 22.3 Experimental Data.- 22.4 Discussion.- 22.5 Conclusions.- 22.6 References.- 22.7 List of Symbols.- 23 An Experimental Investigation of Passive Shock/Boundary Layer Interaction Control on an Airfoil: Unsteady Measurements.- 23.1 Introduction.- 23.2 Measurements.- 23.3 Data Acquisition and Instrumentation.- 23.4 Experimental Results.- 23.5 References.- 23.6 List of Symbols.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA34259936
  • ISBN
    • 3528076569
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Braunschweig
  • ページ数/冊数
    414 p.
  • 大きさ
    23 cm
  • 親書誌ID
ページトップへ