Introductory mathematics : algebra and analysis
Author(s)
Bibliographic Information
Introductory mathematics : algebra and analysis
(Springer undergraduate mathematics series)
Springer, c1998
- : pbk
Available at 33 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Gakushuin University Library数学図
pbk. : alk. paper512||S||6880000438080,
: pbk. : alk. paper510/830/10200438080
Note
Includes index
Description and Table of Contents
Description
This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.
Table of Contents
1. Sets, Functions and Relations.- 1.1 Sets.- 1.2 Subsets.- 1.3 Well-known Sets.- 1.4 Rationals, Reals and Pictures.- 1.5 Set Operations.- 1.6 Sets of Sets.- 1.7 Paradox.- 1.8 Set-theoretic Constructions.- 1.9 Notation.- 1.10 Venn Diagrams.- 1.11 Quantifiers and Negation.- 1.12 Informal Description of Maps.- 1.13 Injective, Surjective and Bijective Maps.- 1.14 Composition of Maps.- 1.15 Graphs and Respectability Reclaimed.- 1.16 Characterizing Bijections.- 1.17 Sets of Maps.- 1.18 Relations.- 1.19 Intervals.- 2. Proof.- 2.1 Induction.- 2.2 Complete Induction.- 2.3 Counter-examples and Contradictions.- 2.4 Method of Descent.- 2.5 Style.- 2.6 Implication.- 2.7 Double Implication.- 2.8 The Master Plan.- 3. Complex Numbers and Related Functions.- 3.1 Motivation.- 3.2 Creating the Complex Numbers.- 3.3 A Geometric Interpretation.- 3.4 Sine, Cosine and Polar Form.- 3.5 e.- 3.6 Hyperbolic Sine and Hyperbolic Cosine.- 3.7 Integration Tricks.- 3.8 Extracting Roots and Raising to Powers.- 3.9 Logarithm.- 3.10 Power Series.- 4. Vectors and Matrices.- 4.1 Row Vectors.- 4.2 Higher Dimensions.- 4.3 Vector Laws.- 4.4 Lengths and Angles.- 4.5 Position Vectors.- 4.6 Matrix Operations.- 4.7 Laws of Matrix Algebra.- 4.8 Identity Matrices and Inverses.- 4.9 Determinants.- 4.10 Geometry of Determinants.- 4.11 Linear Independence.- 4.12 Vector Spaces.- 4.13 Transposition.- 5. Group Theory.- 5.1 Permutations.- 5.2 Inverse Permutations.- 5.3 The Algebra of Permutations.- 5.4 The Order of a Permutation.- 5.5 Permutation Groups.- 5.6 Abstract Groups.- 5.7 Subgroups.- 5.8 Cosets.- 5.9 Cyclic Groups.- 5.10 Isomorphism.- 5.11 Homomorphism.- 6. Sequences and Series.- 6.1 Denary and Decimal Sequences.- 6.2 The Real Numbers.- 6.3 Notation for Sequences.- 6.4 Limits of Sequences.- 6.5 The Completeness Axiom.- 6.6 Limits of Sequences Revisited.- 6.7 Series.- 7. Mathematical Analysis.- 7.1 Continuity.- 7.2 Limits.- 8. Creating the Real Numbers.- 8.1 Dedekind's Construction.- 8.2 Construction via Cauchy Sequences.- 8.3 A Sting in the Tail: p-adic numbers.- Further Reading.- Solutions.
by "Nielsen BookData"