Machine learning: ECML-98 : 10th European Conference on Machine Learning, Chemnitz, Germany, April 21-23, 1998 : proceedings
著者
書誌事項
Machine learning: ECML-98 : 10th European Conference on Machine Learning, Chemnitz, Germany, April 21-23, 1998 : proceedings
(Lecture notes in computer science, 1398 . Lecture notes in artificial intelligence)
Springer, c1998
- : pbk
大学図書館所蔵 全48件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book constitutes the refereed proceedings of the 10th European Conference on Machine Learning, ECML-98, held in Chemnitz, Germany, in April 1998.
The book presents 21 revised full papers and 25 short papers reporting on work in progress together with two invited contributions; the papers were selected from a total of 100 submissions. The book is divided in sections on applications of ML, Bayesian networks, feature selection, decision trees, support vector learning, multiple models for classification, inductive logic programming, relational learning, instance-based learning, clustering, genetic algorithms, reinforcement learning and neural networks.
目次
Learning in agent-oriented worlds.- Naive (Bayes) at forty: The independence assumption in information retrieval.- Learning verbal transitivity using loglinear models.- Part-of-speech tagging using decision trees.- Inference of finite automata: Reducing the search space with an ordering of pairs of states.- Automatic acquisition of lexical knowledge from sparse and noisy data.- A normalization method for contextual data: Experience from a large-scale application.- Learning to classify x-ray images using relational learning.- ILP experiments in detecting traffic problems.- Simulating children learning and explaining elementary heat transfer phenomena: A multistrategy system at work.- Bayes optimal instance-based learning.- Bayesian and information-theoretic priors for Bayesian network parameters.- Feature subset selection in text-learning.- A monotonic measure for optimal feature selection.- Inducing models of human control skills.- God doesn't always shave with Occam's razor - Learning when and how to prune.- Error estimators for pruning regression trees.- Pruning decision trees with misclassification costs.- Text categorization with Support Vector Machines: Learning with many relevant features.- A short note about the application of polynomial kernels with fractional degree in Support Vector Learning.- Classification learning using all rules.- Improved pairwise coupling classification with correcting classifiers.- Experiments on solving multiclass learning problems by n 2-classifier.- Combining classifiers by constructive induction.- Boosting trees for cost-sensitive classifications.- Naive bayesian classifier committees.- Batch classifications with discrete finite mixtures.- Induction of recursive program schemes.- Predicate invention and learning from positive examples only.- An inductive logic programming framework to learn a concept from ambiguous examples.- First-order learning for Web mining.- Explanation-based generalization in game playing: Quantitative results.- Scope classification: An instance-based learning algorithm with a rule-based characterisation.- Error-correcting output codes for local learners.- Recursive lazy learning for modeling and control.- Using lattice-based framework as a tool for feature extraction.- Determining property relevance in concept formation by computing correlation between properties.- A buffering strategy to avoid ordering effects in clustering.- Coevolutionary, distributed search for inducing concept descriptions.- Continuous mimetic evolution.- A host-parasite genetic algorithm for asymmetric tasks.- Speeding up Q(?)-learning.- Q-learning and redundancy reduction in classifier systems with internal state.- Composing functions to speed up reinforcement learning in a changing world.- Theoretical results on reinforcement learning with temporally abstract options.- A general convergence method for Reinforcement Learning in the continuous case.- Interpretable neural networks with BP-SOM.- Convergence rate of minimization learning for neural networks.
「Nielsen BookData」 より