Time-series analysis : a comprehensive introduction for social scientists
著者
書誌事項
Time-series analysis : a comprehensive introduction for social scientists
In-house reproduction
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Original pub.: Cambridge ; New York : Cambridge University Press , 1981
Includes index
全頁複写の私家製本
内容説明・目次
内容説明
Since the 1970s social scientists and scientists in a variety of fields - psychology, sociology, education, psychiatry, economics and engineering - have been interested in problems that require the statistical analysis of data over time and there has been in effect a conceptual revolution in ways of thinking about pattern and regularity. This book is a comprehensive introduction to all the major time-series techniques, both time-domain and frequency-domain. It includes work on linear models that simplify the solution of univariate and multivariate problems. The author begins with a non-mathematical overview: throughout, he provides easy-to-understand, fully worked examples drawn from real studies in psychology and sociology. Other, less comprehensive, books on time-series analysis require calculus: this presupposes only a standard introductory statistics course covering analysis of variance and regression. The chapters are short, designed to build concepts (and the reader's confidence) one step at a time. Many illustrations aid visual, intuitive understanding. Without compromising mathematical rigour, the author keeps in mind the reader who does no have an easy time with mathematics: the result is a readily accessible and practical text.
目次
- Preface
- Part I. Overview: 1. The search for hidden structures
- 2. The ubiquitous cycles
- 3. How Slutzky created order from chaos
- 4 Forecasting: Yule's autoregressive models
- 5. Into the black box with white light
- 6. Experimentation and change
- Part II. Time-series models: 7. Models and the problem of correlated data
- 8. An introduction to time-series models: stationarity
- 9. What if the data are not stationary?
- Part III. Deterministic and nondeterministic components: 10. Moving-average models
- 11. Autoregressive models
- 12. The complex behaviour of the second-order autoregressive process
- 13. The partial autocorrelation function: completing the duality
- 14. The duality of MA and AR processes
- Part IV. Stationary frequency-domain models: 15. The spectral density function
- 16. The periodogram
- 17. Spectral windows and window carpentry
- 18. Explanation of the Slutzky effect
- Part V. Estimation in the time domain: 19. AR model fitting and estimation
- 20. Box-Jenkins model fitting: the ARIMA models
- 21. Forecasting
- 22. Model fitting: worked example
- Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
- 24. Bivariate frequency example: mother-infant play
- 25. Bivariate time-domain analysis
- Part VII. Other Techniques: 26. The interrupted time-series experiment
- 27. Multivariate approaches
- Notes
- References
- Index.
「Nielsen BookData」 より