Nonlinear fracture mechanics for engineers

書誌事項

Nonlinear fracture mechanics for engineers

Ashok Saxena

CRC Press, c1998

  • : alk. paper

大学図書館所蔵 件 / 15

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Fracture mechanics is an essential tool for engineers in a number of different engineering disciplines. For example, an engineer in a metals- or plastics-dependent industry might use fracture mechanics to evaluate and characterize materials, while another in aerospace or construction might use fracture mechanics-based methods for product design and service life-time estimation. This balanced treatment, which covers both applied engineering and mathematical aspects of the topic, provides a much-needed multidisciplinary treatment of the field suitable for the many diverse applications of the subject. While texts on linear elastic fracture mechanics abound, no complete treatments of the complex topic of nonlinear fracture mechanics have been available in a textbook format - until now. Written by an author with extensive industry credentials as well as academic experience, Nonlinear Fracture Mechanics for Engineers examines nonlinear fracture mechanics and its applications in mechanics, materials testing, and life prediction of components. The book includes the first-ever complete examination of creep and creep-fatigue crack growth. Examples and problems reinforce the concepts presented. A complete chapter on applications and case studies involving nonlinear fracture mechanics completes this thorough evaluation of this dynamic field of study.

目次

Overview Introduction Classification of Fracture Mechanics Regimes History of Developments in Fracture Mechanics Review of Solid Mechanics Stress Strain Elasticity Plasticity Consideration of Creep Component Analysis in the Plastic Regime Fully Plastic/Limit Loads Review of Linear Elastic Fracture Mechanics Basic Concepts Crack Tip Plasticity Compliance Relationships Fracture Toughness and Predictive Fracture in Components Subcritical Crack Growth Limitations of LEFM Analysis of Cracks under Elastic-Plastic Conditions Introduction Rice's J-Integral J-Integral, Crack Tip Stress Fields, and Crack Tip Opening Displacement J-Integral as a Fracture Parameter and Its Limitations Methods of Estimating J-Integral Analytical Solutions J-Integral for Test Specimens J for Growing Cracks Numerically Obtained Solutions Tables of J-Solutions Crack Growth Resistance Curves Fracture Parameters under Elastic-Plastic Loading Experimental Methods for Determining Stable Crack Growth and Fracture Special Considerations for Weldments Instability, Dynamic Fracture, and Crack Arrest Fracture Instability Fracture under Dynamic Conditions Crack Arrest Test Methods for Dynamic Fracture and Crack Arrest Constraint Effects and Microscopic Aspects of Fracture Higher Order Terms of Asymptotic Series Cleavage Fracture Ductile Fracture Ductile-Brittle Transition Fatigue Crack Growth under Large-Scale Plasticity Crack Tip Cyclic Plasticity, Damage, and Crack Closure ?J-Integral Test Methods for Characterizing FCGR under Large Plasticity Conditions Behavior of Small Cracks Analysis of Cracks in Creeping Materials Stress Analysis of Cracks Under Steady-State Creep Analysis of Cracks under Small-Scale and Transition Creep Consideration of Primary Creep Effects of Crack Growth on the Crack Tip Stress Fields Crack Growth in Creep-Brittle Materials Creep Crack Growth Test Methods for Characterizing Creep Crack Growth Microscopic Aspects of Creep Crack Growth Creep Crack Growth in Weldments Creep-Fatigue Crack Growth Early Approaches for Characterizing Creep-Fatigue Crack Growth Behavior Time-Dependent Fracture Mechanics Parameters for Creep-Fatigue Crack Growth Methods of Determining (Ct)avg Experimental Methods for Characterizing Creep Crack Growth Creep-Fatigue Crack Growth Correlations Case Studies Applications of Fracture Mechanics Fracture Mechanics Analysis Methodology Case Studies Appendices Index

「Nielsen BookData」 より

詳細情報

ページトップへ