The theory of partitions

書誌事項

The theory of partitions

George E. Andrews

(Cambridge mathematical library)

Cambridge University Press, 1998, c1984

  • : pbk

大学図書館所蔵 件 / 40

この図書・雑誌をさがす

注記

Originally published: Addison-Wesley, 1976

Includes bibliographical references and indexes

内容説明・目次

内容説明

This book develops the theory of partitions. Simply put, the partitions of a number are the ways of writing that number as sums of positive integers. For example, the five partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. Surprisingly, such a simple matter requires some deep mathematics for its study. This book considers the many theoretical aspects of this subject, which have in turn recently found applications to statistical mechanics, computer science and other branches of mathematics. With minimal prerequisites, this book is suitable for students as well as researchers in combinatorics, analysis, and number theory.

目次

  • 1. The elementary theory of partitions
  • 2. Infinite series generating functions
  • 3. Restricted partitions and permutations
  • 4. Compositions and Simon Newcomb's problem
  • 5. The Hardy-Ramanujan-Rademacher expansion of p(n)
  • 6. The asymptotics of infinite product generating functions
  • 7. Identities of the Rogers-Ramanujan type
  • 8. A general theory of partition identities
  • 9. Sieve methods related to partitions
  • 10. Congruence properties of partition functions
  • 11. Higher-dimensional partitions
  • 12. Vector or multipartite partitions
  • 13. Partitions in combinatorics
  • 14. Computations for partitions.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA3697970X
  • ISBN
    • 052163766X
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xvi, 255 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ