Enzyme and microbial biosensors : techniques and protocols
著者
書誌事項
Enzyme and microbial biosensors : techniques and protocols
(Methods in biotechnology, 6)
Humana Press, c1998
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In 1962 Clark and Lyons pioneered the concept of a biosensor. They p- posed immobilizing enzymes at electrochemical detectors to form "enzyme el- trodes" in order to expand the analyte range of ther base sensor. Smce then, the field of blosensors has greatly expanded. Some of the reasons for the expansion include both advances in signal transduction technologies and the incorporation of different biological sensing elements (Table 1). As a consequence, there are now a bewildering array of permutations of the biological sensing element and signal transducers that can be used to c- struct a biosensor. The purpose of the two volumes of Protocols and Te- niques in Biosensors is to provide a basic reference tool and starting point for use by graduate students, postdoctoral and senior researchers, and technicians m academics, industry, and government research establishments, to enable rapid entry into the field of biosensors. There are a variety of approaches that researchers employ to select a combination of bioaffinity elements and signal transducers. One commonly used approach is to identtfy the compound or compounds of interest; identify the biological molecule that yields an appropriate recognitionlselectivtty and dynamic concentration range for the assay; and choose an assay format and signal transduction technology that will meet the analytical requirements for the proposed application, This volume, Enzyme and Microbial Biosensors: Techniques and Protocols, describes a variety of transduction technologies that have been interfaced to enzymes and microorganisms.
目次
Part I.Enzyme Biosensors. Principles of Enzyme Biosensors, Ashok Mulchandani. Enzyme Biosensors Based on pH Electrode
Canh Tran-Minh . Enzyme Biosensors Based on Gas Electrodes, Marco Mascini and Gianna Marrazza. Enzyme Biosensors Based on ISFETs, Roland Ulber and Thomas Scheper. Enzyme Biosensors Based on Oxygen Detection, F. W. Scheller, D. Pfeiffer, F. Lisdat, C. Bauer, and N. Gajovic. Enzyme Biosensors Based on the Hydrogen Peroxide Electrode, John Woodward. Enzyme Biosensors Based on Mediator-Modified Carbon Paste Electrode, Prem C. Pandey. Enzyme Biosensors Based on Electron Transfer Between Electrode and Immobilized Peroxidases, Lo Gorton, Elisabeth Csoeregi, Tautgirdas Ruzgas, Irina Gazaryan, and Gyoergy Marko-Varga. Enzyme Biosensors Based on Redox Polymers, Latha Shankar, Michael G. Garguilo, and Adrian C. Michael .
Enzyme Biosensors Based on Metallized Carbon Electrodes, Joseph Wang. Enzyme Biosensors Based on Conducting Polymers,
Wolfgang Schuhmann. Enzyme Sensors Based on Conductimetric Measurement, Norman F. Sheppard, Jr. and Anthony Guiseppi-Elie. Enzyme Biosensors Based on Thermal Transducer/Thermistor, Kumaran Ramanathan, Masoud Khayyami,
and Bengt Danielsson. Enzyme Biosensors Based on Fluorometric Detection, Ashutosh Sharma. Part II. Microbial Biosensors. Microbial Biosensors Based on Oxygen Electrodes,Klaus Riedel . Microbial Biosensors Based on Respiratory Inhibition, Yoshiko Arikawa, Kazunori Ikebukuro, and Isao Karube. Microbial BiosensorsBased on Potentiometric Detection
Aleksandr L. Simonian, Evgenia I. Rainina, and James R. Wild. Microbial Biosensors Based on Optical Detection, Udayakumar Matrubutham and Gary S. Sayler. Index .
「Nielsen BookData」 より