Multivariate reduced-rank regression : theory and applications
著者
書誌事項
Multivariate reduced-rank regression : theory and applications
(Lecture notes in statistics, 136)
Springer, c1998
大学図書館所蔵 全51件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
References : p. [235]-250
Includes index
内容説明・目次
内容説明
In the area of multivariate analysis, there are two broad themes that have emerged over time. The analysis typically involves exploring the variations in a set of interrelated variables or investigating the simultaneous relation ships between two or more sets of variables. In either case, the themes involve explicit modeling of the relationships or dimension-reduction of the sets of variables. The multivariate regression methodology and its variants are the preferred tools for the parametric modeling and descriptive tools such as principal components or canonical correlations are the tools used for addressing the dimension-reduction issues. Both act as complementary to each other and data analysts typically want to make use of these tools for a thorough analysis of multivariate data. A technique that combines the two broad themes in a natural fashion is the method of reduced-rank regres sion. This method starts with the classical multivariate regression model framework but recognizes the possibility for the reduction in the number of parameters through a restrietion on the rank of the regression coefficient matrix. This feature is attractive because regression methods, whether they are in the context of a single response variable or in the context of several response variables, are popular statistical tools. The technique of reduced rank regression and its encompassing features are the primary focus of this book. The book develops the method of reduced-rank regression starting from the classical multivariate linear regression model.
目次
1 Multivariate Linear Regression.- 2 Reduced-Rank Regression Model.- 3 Reduced-Rank Regression Models With Two Sets of Regressors.- 4 Reduced-Rank Regression Model With Autoregressive Errors.- 5 Multiple Time Series Modeling With Reduced Ranks.- 6 The Growth Curve Model and Reduced-Rank Regression Methods.- 7 Seemingly Unrelated Regressions Models With Reduced Ranks.- 8 Applications of Reduced-Rank Regression in Financial Economics.- 9 Alternate Procedures for Analysis of Multivariate Regression Models.- References.- Author Index.
「Nielsen BookData」 より