Analytical and computational methods of advanced engineering mathematics
著者
書誌事項
Analytical and computational methods of advanced engineering mathematics
(Texts in applied mathematics, 28)
Springer, c1998
- タイトル別名
-
Advanced engineering mathmatics
大学図書館所蔵 件 / 全24件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical reference and index
内容説明・目次
内容説明
This book focuses on the topics which provide the foundation for practicing engineering mathematics: ordinary differential equations, vector calculus, linear algebra and partial differential equations. Destined to become the definitive work in the field, the book uses a practical engineering approach based upon solving equations and incorporates computational techniques throughout.
目次
1 Numerical Analysis.- 1.1 The Nature of Numerical Analysis.- 1.2 Polynomial Interpolation.- 1.3 Numerical Integration and Differentiation.- 1.4 Solution of Equations.- 1.5 Inverse Functions.- 1.6 Implicit Functions.- 1.7 Numerical Summation of Infinite Series.- 2 Ordinary Differential Equations of First Order.- 2.1 The Nature of Differential Equations.- 2.2 Separable Equations.- 2.3 Linear First-Order Equations.- 2.4 Exact Equations.- 2.5 Applications to Some Second-Order Equations.- 2.6 The Initial Value Problem.- 2.7 Numerical Methods for the Initial Value Problem.- 3 Ordinary Differential Equations of Higher Order.- 3.1 Examples from Engineering and Physics.- 3.2 Linear Second-Order Equations - Structure of Solutions.- 3.3 Linear Second-Order Equations with Constant Coefficients.- 3.4 Linear Second-Order Equations with Analytic Coefficients.- 3.5 Numerical Methods for Second-Order Equations.- 3.6 Linear Equations of Order n > 2.- 4 The Laplace Transform.- 4.1 The Nature of the Laplace Transform.- 4.2 The Laplace Transforms of Some Elementary Functions.- 4.3 Operational Rules for the Laplace Transform.- 4.4 Applications to Differential Equations.- 4.5 Applications to Systems of Differential Equations.- 5 Linear Algebra.- 5.1 Systems of Linear Equations.- 5.2 The Gauss Elimination Method.- 5.3 Vector Spaces.- 5.4 Matrices and Matrix Algebra.- 5.5 The Fundamental Theorem of Linear Algebra.- 5.6 Determinants and Cramer's Rule.- 5.7 Eigenvalues and Eigenvectors.- 6 Vector Analysis.- 6.1 Vector Algebra.- 6.2 Vector Calculus of Curves in Space.- 6.3 Vector Calculus of Surfaces in Space.- 6.4 Calculus of Scalar and Vector Fields.- 6.5 Integral Theorems of Vector Calculus.- 6.6 X-Ray Diffraction and Crystal Structure.- 7 Partial Differential Equations of Mathematical Physics.- 7.1 Vibrating Strings: D'Alembert's Wave Equation.- 7.2 Heat Diffusion in Rods: Fourier's Heat Equation.- 7.3 Heat Diffusion in Plates.- 7.4 Steady-State Heat Diffusion in Plates: The Laplace Equation.- 7.5 Vibrations of Drums.- 7.6 Heat Diffusion in Solids.- 7.7 Steady-State Heat Diffusion in Solids.- 8 Fourier Analysis and Sturm-Liouville Theory.- 1 Fourier Series.- 8.1 Dirichlet Boundary Conditions and Fourier Sine Series.- 8.2 Orthogonality and Fourier Coefficients.- 8.3 Convergence of Fourier Sine Series.- 8.4 Neumann Boundary Conditions and Fourier Cosine Series.- 8.5 Periodic Boundary Conditions and the Complete Fourier Series.- 8.6 Proofs of the Convergence Theorems (Optional).- II Fourier Integrals.- 8.7 Heat Diffusion in an Infinite Rod.- 8.8 Orthogonality Calculation.- 8.9 The Fourier Integral.- 8.10 Fourier Sine and Cosine Integrals.- III Sturm-Liouville Theory.- 8.11 Heat Diffusion in Nonhomogeneous Rods.- 8.12 Sturm-Liouville Problems: Basic Theory.- 8.13 Construction of Eigenvalues and Eigenfunctions.- 8.14 Singular Sturm-Liouville Problems.- 9 Boundary Value Problems of Mathematical Physics.- 9.1 Heat Diffusion in One Dimension.- 9.2 Vibration of Strings and Traveling Waves.- 9.3 Steady-State Diffusion of Heat in Plates.- 9.4 Transient Diffusion of Heat in Plates.- 9.5 Vibrations of Drums.- 9.6 Steady-State Diffusion of Heat in Solids.- 9.7 The Laplace Transform Method.- Appendix: Answers and Hints to Selected Exercises.- References.
「Nielsen BookData」 より