Time series models for business and economic forecasting
著者
書誌事項
Time series models for business and economic forecasting
Cambridge University Press, 1998
- : hbk
- : pbk
大学図書館所蔵 全71件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 261-273
Includes indexes
内容説明・目次
内容説明
The econometric analysis of economic and business time series is a major field of research and application. The last few decades have witnessed an increasing interest in both theoretical and empirical developments in constructing time series models and in their important application in forecasting. In Time Series Models for Business and Economic Forecasting, Philip Franses examines recent developments in time series analysis. The early parts of the book focus on the typical features of time series data in business and economics. Part III is concerned with the discussion of some important concepts in time series analysis, the discussion focuses on the techniques which can be readily applied in practice. Parts IV-VIII suggest different modeling methods and model structures. Part IX extends the concepts in chapter three to multivariate time series. Part X examines common aspects across time series.
目次
- Part I. Introduction
- Part II. Key Features of Economic Time Series: 1. Trends
- 2. Seasonality
- 3. Aberrant observations
- 4. Conditional heteroskedasticity
- 5. Nonlinearity
- 6. Common features
- Part III. Useful Concepts in Univariate Time Series Analysis: 7. Autoregressive moving average models
- 8. Autocorrelation and identification
- 9. Estimation and diagnostic measures
- 10. Model selection
- 11. Forecasting
- Part IV. Trends: 12. Modeling trends
- 13. Testing for unit roots
- 14. Testing for stationarity
- 15. Forecasting
- Part V. Seasonality: 16. Typical features of seasonal time series
- 17. Seasonal unit roots
- 18. Periodic models
- 19. Miscellaneous topics
- Part VI. Aberrant Observations: 20. Modeling aberrant observations
- 21. Testing for aberrant observations
- 22. Irregular data and unit roots
- Part VII. Conditional Heteroskedasticity: 23. Models for heteroskedasticity
- 24. Specification and forecasting
- 25. Various extensions
- Part VIII. Nonlinearity: 26. Some models and their properties
- 27. Empirical specification strategy
- Part IX. Multivariate Time Series: 28. Representations
- 29. Empirical model building
- 30. Use of VAR models
- Part X. Common Features: 31. Some preliminaries for a bivariate time series
- 32. Common trends and co-integration
- 33. Common seasonality and other features
- Data appendix.
「Nielsen BookData」 より