Advances in data science and classification : proceedings of the 6th Conference of the International Federation of Classification Societies (IFCS-98), Università "La Sapienza", Rome, 21-24 July, 1998
著者
書誌事項
Advances in data science and classification : proceedings of the 6th Conference of the International Federation of Classification Societies (IFCS-98), Università "La Sapienza", Rome, 21-24 July, 1998
(Studies in classification, data analysis, and knowledge organization)
Springer, c1998
- : pbk : alk. pap
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).
目次
Methodologies in Classification: Clustering and Classification: J.D. Carroll, A. Chaturvedi: K-Midranges Clustering.- A. Cerioli: A New Method for Detecting Influential Observations in Nonhierarchical Cluster Analysis.- J.C. Gower, G.J.S.Ross: Non-Probabilistic Classification.- A. Hardy, P. Andre: An Investigation of Nine Procedures for Detecting the Structure in a Data Set.- C. Hennig: Clustering and Outlier Identification: Fixed Point Cluster Analysis.- S. Korenjak-Cerne, V. Batagelj: Clustering Large Datasets of Mixed Units.- J.A. Martin-Fernandez, C. Barcelo-Vidal, V. Pawlowsky-Glahn: A Critical Approach to Non-Parametric Classification of Compositional Data.- F. Murtagh, J.L. Stark, M. Berry: Clustering Based on Wavelet Transform: Applications to Point Pattern Clustering and to High-Dimensional Data Analysis.- Comparison and Consensus of Classifications: C. Hayashi, K. Yamaoka: Beyond Simpon`s Paradox: One Problem in Data Science.- F.J. Lapointe: For Consensus (With Branch Lengths).- B. Leclerc: Consensus of Classifications: The Case of Trees.- J. L. Thorley, M. Wilkinson, M. Charleston: The Information Content of Consensus Trees.- Fuzzy Clustering and Fuzzy Methods: S. Bodjanova: Compatible and Complementary Fuzzy Partitions.- S. Miyamoto, K. Umayahara: Two Methods of Fuzzy c-Means and Classification Functions.- M. Ryoke, Y. Nakamori, H. Tamura: Dynamic Determination of Mixing Parameters in Fuzzy Clustering.- M. Sato-Ilic, Y. Sato: A Dynamic Additive Fuzzy Clustering Model.- S. Turpin-Dhilly, C. Botte-Lecocq: Application of Fuzzy Mathematical Morphology for Pattern Classification.- Optimization in Classification and Constrained Classification: K.Bachar, I.-C. Lerman: Statistical Conditions for a Linear Complexity for an Algorithm of Hierarchical Classification Under Constraint of Contiguity.- V. Batagelj, A. Ferligoj: Constrained Clustering Problems.- T. Gastaldi, D. Vicari: A Constrained Clusterwise Procedure for Segmentation.- L. Gueguen, R. Vignes, J. Lebbe: Maximal Predictive Clustering with Order Constraint: a Linear and Optimal Algorithm.- I. Lari, M. Maravalle, B. Simeone: A Linear Programming Based Heuristic for a Hard Clustering Problem on Trees.- M. Mizuta: Two Principal Points of Symmetric Distributions.- N, Nicoloyannis, M. Terrenoire, D. Tounissoux: Pertinence for a Classification.- J. Trejos, A. Murillo, E. Piza: Global Stochastic Optimization Techniques Applied to Partitioning.- Probabilistic Modelling Methods in Classification and Pattern Recognition: H. Bensmail, J.J. Meulman: MCMC Inference for Model-Based Cluster Analysis.- L. Gyoerfi, M. Horvath: On the Asymptotic Normality of a Resubstitution Error Estimate.- G. V. Orman: Stochastic Methods for Generative Systems Analysis.- H.J. Vos: Compensatory Rules for Optimal Classification with Mastery Scores.- Other Approaches for Classification: Discrimination, Neural Network, Regression Tree: Discrimination and Classification: V. Bertholet, J.P. Rasson, S. Lissoir: About the Automatic Detection of Training Sets for Multispectral Images Classification.- A.P.Duarte Silva: A 'Leaps and Bounds' Algorithm for Variable Selection in Two Group Discriminant Analysis.- M.-H. Huh, K-S. Yang: Canonical Discriminant Analysis of Multinomial Samples with Applications to Textual Data.- I.C. Lerman, J.F. Pinto da Costa: How to Extract Predictive Binary Attributes from a Categorical One.- L. Lizzani: A Density Distance Based Approach to Projection Pursuit Discriminant Analysis.- A. Montanari, D. G. Calo: Two Group Linear Discrimination Based on
「Nielsen BookData」 より