Parameterized complexity
著者
書誌事項
Parameterized complexity
(Monographs in computer science)
Springer, c1999
- : pbk
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover reprint of the hardcover 1st edition 1999"--T.p. verso
Includes bibliographical references (p. [489]-516) and index
内容説明・目次
内容説明
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
目次
- 1 Computers, Complexity, and Intractability from the Parametric Point of View.- 1.1 Introduction.- 1.2 The Role of Computational Complexity in Modern Science.- 1.3 The Story of Dr.O, Continued.- 1.4 Reworking the Foundations of Computational Complexity.- 1.5 A Deal with the Devil.- 1.6 How Parameters Arise in Practice.- 1.7 A Distinctive Positive Toolkit.- 1.8 O No?.- 1.9 The Barometer of Parametric Intractability.- 1.10 Structural Aspects of Parameterized Complexity.- 1.11 An Overview of Current Research Horizons.- I Parameterized Tractability.- 2 The Basic Definitions.- 2.1 Fixed-Parameter Tractability.- 2.2 The Advice View.- 3 Some Ad Hoc Methods: The Methods of Bounded Search Tree and Problem Kernel.- 3.1 The Method of Bounded Search Trees.- 3.1.1 The Basic Method.- 3.1.2 Heuristic Improvements, Shrinking the Search Tree.- 3.2 The Method of Reduction to a Problem Kernel.- 3.2.1 The Basic Method.- 3.2.2 Hereditary Properties and Leizhen Cai's Theorem.- 4 Optimization Problems, Approximation Schemes, and Their Relation with FPT.- 4.1 Optimization Problems.- 4.2 How FPT and Optimization Problems Relate.- 4.3 The Classes MAXSNP, MIN F+?1(h), and FPT.- 5 The Advice View Revisited and LOGSPACE.- 6 Methods via Automata and Bounded Treewidth.- 6.1 Classical Automata Theory.- 6.1.1 Deterministic Finite Automata.- 6.1.2 Nondeterministic Finite Automata.- 6.1.3 Regular Languages.- 6.1.4 The Myhill-Nerode Theorem and the Method of Test Sets.- 6.1.5 Classical Tree Automata.- 6.2 Treewidth.- 6.3 Bodlaender's Theorem.- 6.4 Parse Trees for Graphs of Bounded Treewidth and an Analog of the Myhill-Nerode Theorem.- 6.5 Courcelle's Theorem.- 6.5.1 The Basic Theorem.- 6.5.2 Implementing Courcelle's Theorem.- 6.6 Seese's Theorem.- 6.7 Notes on MS1 Theory.- 7 Well-Quasi-Orderings and the Robertson-Seymour Theorems.- 7.1 Basic WQO Theory.- 7.2 Thomas' Lemma.- 7.2.1 Thomas' Lemma Fails for Path Decompositions.- 7.3 The Graph Minor Theorem for Bounded Treewidth.- 7.4 Excluding a Forest.- 7.5 Connections with Automata Theory and Boundaried Graphs.- 7.6 A Sketch of the Proof of the Graph Minor Theorem.- 7.7 Immersions and the Nash-Williams Conjecture.- 7.8 Applications of the Obstruction Principle and WQO's.- 7.9 Effectivizations of Obstruction-Based Methods.- 7.9.1 Effectivization by Self-Reduction.- 7.9.2 Effectivization by Obstruction Set Computation.- 8 Miscellaneous Techniques.- 8.1 Depth-First Search.- 8.2 Bounded-Width Subgraphs, the Plehn-Voigt Theorem, and Induced Subgraphs.- 8.3 Hashing.- II Parameterized Intractability.- 9 Reductions.- 10 The Basic Class W[1] and an Analog of Cook's Theorem.- 11 Some Other W[1]-Hardness Results.- 12 The W -Hierarchy.- 13 Beyond W[t]-Hardness.- 14 Fixed Parameter Analogs of PSPACE and k-Move Games.- 15 Provable Intractability: The Class XP.- III Structural and Other Results.- 16 Another Basis for the W -Hierarchy, the Tradeoff-Theorem, and Randomized Reductions.- 17 Relationships with Classical Complexity and Limited Nondeterminism.- 17.1 Classical Complexity.- 17.2 Nondeterminism in P, LOGNP, and the Cai-Chen Model and Other Models.- 18 The Monotone and Antimonotone Collapse Theorems: MONOTONEW[2t + 1] = W[2t] and ANTIMONOTONEW[2t + 2] = W[2t + 1].- 19 The Structure of Languages Under Parameterized Reducibilities.- 19.1 Some Tools.- 19.2 Results.- IV Appendix.- A A Problem Compendium and Guide to W-Hierarchy Completeness, Hardness, and Classification
- and Some Research Horizons.- B Research Horizons.- B.2 A Lineup of Tough Customers.- B.3 Connections Between Classical and Parameterized Complexity.- B.4 Classification Gaps.- B.5 Structural Issues and Analogs of Classical Results.- References.
「Nielsen BookData」 より