Polyamine protocols
著者
書誌事項
Polyamine protocols
(Methods in molecular biology / John M. Walker, series editor, 79)
Humana Press, c1998
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index and bibliographical references
内容説明・目次
内容説明
Putrescine and spermidine are ubiquitous in living organisms. Spermine, third of the three most commonly occurring natural polyamines, is probably present in all eukaryotes but is rare (or nonexistent) in prokaryotes. Polyamine residues are constituents of many compounds found in plants and insects. Putrescine, spermidine, or spermine-containing alkaloids are found in many plants, nonproteinaceous spider and wasp toxins contain polyamine residues, and glutathionyl-spermidine conjugates have been found in some pathogenic microorganisms. In most cells polyamines are the products of a highly regulated bios- thetic pathway. It is not clear whether the elaborate regulation of polyamine synthesis is a consequence of their essential role(s) in cellular differentiation and development, or part of a defense mechanism to prevent overaccumulation of compounds that are toxic in excess. In addition to their biosynthetic capa- bility, many cells also possess transport systems for polyamines that respond to intracellular polyamine levels, and other stimuli, and are regulated by mecha- nisms that are at present incompletely defined.
Two routes of polyamine catabolism have been identified in mammalian cells, a biodegradative route and a recycling pathway. The relative impor- tance of these pathways and their overall regulation is only partially resolved. What is clear is the widespread occurrence of a variety of polyamine-oxid- ing enzymes in animals, plants, bacteria, and fungi. Polyamine catabolism, by whichever route, results in the formation of aminoaldehydes as intermediates.
目次
Part I. Introduction. Polyamines: An Introduction, D. Morgan. Part II. Assay Methods for Enzymes of Polyamine Biosynthesis. Determination of Ornithine Decarboxylase Activity Using [3H]Ornithine, A. Tabib. Assay of Mammalian Ornithine Decarboxylase Activity Using [14C]Ornithine, C. Coleman and A. Pegg. Assay of Mammalian S-Adenosylmethionine Decarboxylase Activity, L. Shantz and A. Pegg. Assay of Spermidine and Spermine Synthases, L. Wiest and A. Pegg. Measurement of Spermidine/Spermine N1-Acetyltransferase Activity, H. Wallace and D. Evans. Assay of Spermidine N8-Acetyltransferase, J. Blankenship. Part III. Assay Methods for Enzymes of Polyamine Catabolism. Assay of N8-Acetylspermidine Deacetylase, J. Blankenship. Hydrogen Peroxide Assay for Amine Oxidase Activity, R. Storer and A. Ferrante. Radiochemical Assay of Diamine Oxidase, R. Storer and A. Ferrante. Radiochemical Estimation of Polyamine Oxidase, D. Morgan. Measurement of Aldehyde Formation as an Assay for Polyamine Oxidase Activity, D. Morgan. Part IV. Measurement of Polyamines. Determination of Polyamines as Their Benzoylated Derivatives by HPLC, D. Morgan. A Dansyl Chloride-HPLC Method for the Determination of Polyamines, K. Hunter. The Determination of Polyamines and Amino Acids by a Fluorescamine-HPLC Method, K. Hunter and A. Fairlamb. Thin-Layer Chromatographic Method for Assaying Polyamines, R.Madhubala. Part V. Measurement of Polyamine Transport. Measurement of Polyamine Transport: Adherent Cells, D. Morgan. Measurement of Polyamine Transport: Cells in Suspension, S. Le Quesne and A. Fairlamb. Measurement of Polyamine Efflux from Cells in Culture, H. Wallace and A. Mackarel. Part VI. Measurement of Polyamine Effects on Cell Growth. Leucine Incorporation and Thymidine Incorporation, C. Denton. Tetrazolium (MTT) Assay for Cellular Viability and Activity, D. Morgan. Index.
「Nielsen BookData」 より