Thermomechanical crack growth using boundary elements
著者
書誌事項
Thermomechanical crack growth using boundary elements
(Topics in engineering, v. 34)
Computational Mechanics, c1998
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 184-194
内容説明・目次
内容説明
Thermal and mechanical fatigue problems are encountered in many engineering components, such as pressure vessels, high-temperature engines and interfaces in computer technology. This book describes modelling of thermal fatigue using the Dual Boundary Element Method. In this method both thermal and elasticity equations are written as regular and hypersingular equations, then applied on the crack surfaces. For thermal stress intensity factors a new one-point displacement extrapolation technique is described.
目次
- 1 INTRODUCTION General: Boundary integral formulation in thermoelasticity
- Application to fracture mechanics
- Organisation of the book. 2 THERMOELASTICITY AND FRACTURE MECHANICS Introduction: Thermoelasticity: Notation
- Strain
- Stress
- Generalized Hooke's law
- Plane stress and plane strain
- Eqilibrium equation
- Equations of motion
- Thermodynamics
- Heat conduction equation
- Thermoelasticity equation
- Coupled thermoelasticity
- Uncoupled transient thermoelasticity
- Steady-state thermoelasticity
- Fracture mechanics
- Two-dimensional elastic fields around the crack tip
- Stress singularity around the crack tip due to thermal load
- Energy balance
- Stress intensity factors
- The J^-integral
- Fatigue crack growth
- Crack growth direction
- Summary. 3 BOUNDARY INTEGRAL EQUATIONS Introduction:Boundary integral equations for steady state thermoelasticity
- Temperature equation for an internal point
- Temperature equation for a boundary point
- Flux equation for a boundary point
- Dispacement equation for an internal point
- Displacement equation for a boundary point
- Traction equation for a boundary point
- Boundary integral equations for uncoupled transient thermoelasticity
- Temperature equation for an internal point
- Temperature equation for a boundary point
- Flux equation for a boundary point
- Displacement equation for an internal point
- Displacement equation for a boundary point
- Traction equation for a boundary point
- Summary. 4 DUAL BOUNDARY ELEMENT METHOD APPLIED TO STEADY STATE THERMOELASTICITY Introduction: Dual boundary element method
- Numerical Implementation
- Analytical integration of singular integrands for a crack element
- Assembling the system matrices
- Calculation of Stress Intensity Factors
- Numerical Results
- Rectangular plate with a centre crack
- Rectangular plate with a slant crack
- Rectangular plate with cracks at an internal hole
- Conclusions. 5 DUAL BOUNDARY ELEMENT METHOD APPLIED TO TRANSIENT THERMOELASTICITY Introduction: Dual boundary element method
- Numerical implementation
- Discretization
- Time integration
- Time integration of fundamental fields
- Spatial integration
- Choice of time interpolation procedures
- Rectangular plate
- Semicircular plate
- Calculation of stress intensity factors
- Numerical results
- Rectangular plate with a central crack
- Rectangular plate with an inclined crack
- Conclusions. 6 EFFECT OF THERMAL SINGULARITIES ON STRESS INTENSITY FACTORS Introduction: Modelling Strategy
- Analytical integration of the singular integrals
- Thermal singularity
- Stress intensity factors
- Edge crack in a rectangular plate
- Correction of stress intensity factors
- A circular plate with an edge crack
- Conclusions. 7 THERMOMECHANICAL FATIGUE CRACK GROWTH Introduction: Crack growth modelling
- Residual strength
- Variable amplitude fatigue load
- Effect of temperature on the crack
- Cruciform plate
- Fatigue due to cyclic transient thermal load
- Crack growth modelling in a pure mode II problem
- Crack growth modelling in a mixed mode problem
- Conclusions.
「Nielsen BookData」 より