The fourier transform in biomedical engineering
著者
書誌事項
The fourier transform in biomedical engineering
Birkhäuser, 1998
- Basel
- Boston
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
- 巻冊次
-
Boston ISBN 9780817639419
内容説明
In 1994, in my role as Technical Program Chair for the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, I solicited proposals for mini-symposia to provide delegates with accessible summaries of important issues in research areas outside their particular specializations. Terry Peters and his colleagues submitted a proposal for a symposium on Fourier Trans forms and Biomedical Engineering whose goal was "to demystify the Fourier transform and describe its practical application in biomedi cal situations". This was to be achieved by presenting the concepts in straightforward, physical terms with examples drawn for the parti cipants work in physiological signal analysis and medical imaging. The mini-symposia proved to be a great success and drew a large and appreciative audience. The only complaint being that the time allocated, 90 minutes, was not adequate to allow the participants to elaborate their ideas adequately. I understand that this feedback helped the authors to develop this book.
目次
1 Introduction to the Fourier Transform.- 1.1 Introduction.- 1.2 Basic Functions.- 1.3 Sines, Cosines and Composite waves.- 1.4 Orthogonality.- 1.5 Waves in time and space.- 1.6 Complex numbers. A Mathematical Tool.- 1.7 The Fourier transform.- 1.8 Fourier transforms in the physical world: The Lens as an FT computer.- 1.9 Blurring and convolution.- 1.9.1 Blurring.- 1.9.2 Convolution.- 1.10 The "Point" or "Impulse" response function..- 1.11 Band-limited functions.- 1.12 Summary.- 1.13 Bibliography.- 2 The 1-D Fourier Transform.- 2.1 Introduction.- 2.2 Re-visiting the Fourier transform.- 2.3 The Sampling Theorem.- 2.4 Aliasing.- 2.5 Convolution.- 2.6 Digital Filtering.- 2.7 The Power Spectrum.- 2.8 Deconvolution.- 2.9 System Identification.- 2.10 Summary.- 2.11 Bibliography.- 3 The 2-D Fourier Transform.- 3.1 Introduction.- 3.2 Linear space-invariant systems in two dimensions.- 3.3 Ideal systems.- 3.4 A simple X-ray imaging system.- 3.5 Modulation Transfer Function (MTF).- 3.6 Image processing.- 3.7 Tomography.- 3.8 Computed Tomography.- 3.9 Summary.- 3.10 Bibliography.- 4 The Fourier Transform in Magnetic Resonance Imaging.- 4.1 Introduction.- 4.2 The 2-D Fourier transform.- 4.3 Magnetic Resonance Imaging.- 4.3.1 Nuclear Magnetic Resonance.- 4.3.2 Excitation, Evolution, and Detection.- 4.3.3 The Received Signal: FIDs and Echos.- 4.4 MRI.- 4.4.1 Localization: Magnetic Field Gradients.- 4.4.2 The MRI Signal Equation.- 4.4.3 2-D Spin-Warp Imaging.- 4.4.4 Fourier Sampling: Resolution, Field-of-View, and Aliasing.- 4.4.5 2-D Multi-slice and 3-D Spin Warp Imaging.- 4.4.6 Alternate k -space Sampling Strategies.- 4.5 Magnetic Resonance Spectroscopic Imaging.- 4.5.1 Nuclear Magnetic Resonance Spectroscopy: 1-D.- 4.5.2 Magnetic Resonance Spectroscopic Imaging: 2-D, 3-D, and 4-D.- 4.6 Motion in MRI.- 4.6.1 Phase Contrast Velocity Imaging.- 4.6.2 Phase Contrast Angiography.- 4.7 Conclusion.- 4.8 Bibliography.- 5 The Wavelet Transform.- 5.1 Introduction.- 5.1.1 Frequency analysis: Fourier transform.- 5.2 Time-Frequency analysis.- 5.2.1 Generalities.- 5.2.2. How does time-frequency analysis work?.- 5.2.3 Windowed Fourier transform.- 5.2.4 Wavelet transform.- 5.3 Multiresolution Analysis.- 5.3.1 Scaling Functions.- 5.3.2 Definition.- 5.3.3 Scaling Relation.- 5.3.4 Relationship of multiresolution analysis to wavelets.- 5.3.5 Multiresolution signal decomposition.- 5.3.6 Digital filter interpretation.- 5.3.7 Fast Wavelet Transform Algorithm.- 5.3.8 Multidimensional Wavelet Transforms.- 5.3.9 Fourier vs. Wavelet Digital Signal Processing.- 5.4 Applications.- 5.4.1 Image Compression.- 5.4.2 Irregular heart beat detection from EKG signals.- 5.5 Summary.- 5.6 Bibliography.- 6 The Discrete Fourier Transform and Fast Fourier Transform.- 6.1 Introduction.- 6.2 From Continuous to Discrete.- 6.2.1 The comb function.- 6.2.2 Sampling.- 6.2.3 Interpreting DFT data in a cyclic buffer.- 6.3 The Discrete Fourier Transform.- 6.4 The Fast Fourier Transform.- 6.4.1 The DFT as a matrix equation.- 6.4.2 Simplifying the transition matrix.- 6.4.3 Signal-flow-graph notation.- 6.4.4 The DFT expressed as a signal flow graph.- 6.4.5 Speed advantages of the FFT.- 6.5 Caveats to using the DFT/FFT.- 6.6 Conclusion.- 6.7 Bibliography.
- 巻冊次
-
Basel ISBN 9783764339418
内容説明
Introducing the Fourier Transform as a useful and pratical tool in the biomedical sciences, this volume provides the reader with practical demonstrations and examples.
目次
- Introduction to Fourier transform
- the 2-D Fourier transform
- the transform in MRI
- the wavelet transform.
「Nielsen BookData」 より