Compressor surge and rotating stall : modelling and control
Author(s)
Bibliographic Information
Compressor surge and rotating stall : modelling and control
(Advances in industrial control)
Springer, c1999
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Operating plant as close as possible to constraint boundaries so often brings economic benefits in industrial process control. This is the conundrum at the heart of this monograph by Tommy Gravdahl and Olav Egeland on stall control for compressors. Operation of the compressor closer to the surge line can increase operational efficiency and flexibility The approach taken by the authors follows the modern control system paradigm: -physical understanding, detailed modelling and simulation studies and finally control studies.
The thoroughness of the presentation, bibliography and appendices indicates that the volume has all the hallmarks of being a classic for its subject. Despite the monograph's narrow technical content, the techniques and insights presented should appeal to the wider industrial control community as well as the gas turbine/compressor specialist. M. J. Grimble and M. A.
Table of Contents
1 Compressor Surge and Stall: An Introduction.- 1.1 Introduction.- 1.2 Compressors.- 1.2.1 Types of compressors.- 1.2.2 The axial compressor, principles of operation.- 1.2.3 The centrifugal compressor, principles of operation.- 1.3 Application of compressors.- 1.3.1 Gas turbines and jet engines for propulsion and power generation.- 1.3.2 Compression in the process industry.- 1.3.3 Transportation of gases and fluids in pipelines.- 1.3.4 Supercharging of internal combustion engines.- 1.4 Stability of Compression Systems.- 1.4.1 Surge.- 1.4.2 Rotating Stall.- 1.4.3 Other instabilities.- 1.5 Previous work on modeling of axial compression systems.- 1.5.1 Why model compression systems?.- 1.5.2 The model of Greitzer (1976).- 1.5.3 The model of Moore and Greitzer (1986).- 1.5.4 Other models.- 1.6 Previous work on modeling of centrifugal compr. systems.- 1.6.1 Greitzer-type models for centrifugal compressors.- 1.6.2 Other models.- 1.7 Jet engine and gas turbine models.- 1.8 Previous work on surge/stall avoidance.- 1.8.1 Background and motivation.- 1.8.2 Industrial solutions to surge avoidance.- 1.9 Active Control of Surge and Rotating Stall.- 1.9.1 Background and motivation.- 1.9.2 Control of surge in centrifugal and axial compressors.- 1.9.3 Control of surge and rotating stall in axial compressors.- 1.10 Sensor/actuator selection in surge/stall control.- 1.10.1 Motivation.- 1.10.2 Selection of sensors and actuators for surge control.- 1.10.3 Selection of sensors and actuators for rotating stall control.- 1.10.4 Actuator requirements.- 2 CCV Control of Surge and Rotating Stall for the MG Model.- 2.1 Introduction.- 2.1.1 Motivation and main idea.- 2.1.2 Previous work.- 2.2 Preliminaries.- 2.2.1 The Model of Moore and Greitzer.- 2.2.2 Close Coupled Valve.- 2.2.3 Equilibria.- 2.2.4 Change of Variables.- 2.2.5 Disturbances.- 2.3 Surge Control.- 2.3.1 Undisturbed Case.- 2.3.2 Determination of ?0.- 2.3.3 Time Varying Disturbances.- 2.3.4 Adaption of Constant Disturbances.- 2.4 Control of Rotating Stall.- 2.4.1 Undisturbed Case.- 2.4.2 Disturbed Case.- 2.5 Simulations.- 2.5.1 Surge Control.- 2.5.2 Rotating Stall Control.- 2.6 Conclusion.- 3 Passivity Based Surge Control.- 3.1 Introduction.- 3.1.1 Motivation.- 3.1.2 Notation.- 3.2 Model.- 3.3 Passivity.- 3.3.1 Passivity of Flow Dynamics.- 3.3.2 Passivity of Pressure Dynamics.- 3.3.3 Control Law.- 3.4 Disturbances.- 3.5 Simulations.- 3.6 Concluding Remarks.- 4 A MG Model for Axial Compr. with Non-constant Speed.- 4.1 Introduction.- 4.2 Preliminaries.- 4.3 Modeling.- 4.3.1 Spool Dynamics.- 4.3.2 Compressor.- 4.3.3 Entrance Duct and Guide Vanes.- 4.3.4 Exit Duct and Guide Vanes.- 4.3.5 Overall Pressure Balance.- 4.3.6 Plenum Mass Balance.- 4.3.7 Galerkin Procedure.- 4.3.8 Final Model.- 4.4 Simulations.- 4.4.1 Unstable Equilibrium, ? = 0.5.- 4.4.2 Stable Equilibrium ? = 0.65.- 4.5 Concluding Remarks.- 5 Modelling and Control of Surge for a Centrifugal Compressor with Non-constant Speed.- 5.1 Introduction.- 5.2 Model.- 5.2.1 Impeller.- 5.2.2 Diffuser.- 5.3 Energy Transfer.- 5.3.1 Ideal Energy Transfer.- 5.3.2 Slip.- 5.3.3 Compressor Torque.- 5.3.4 Incidence Losses.- 5.3.5 Frictional Losses.- 5.3.6 Efficiency.- 5.4 Energy Transfer and Pressure Rise.- 5.5 Choking.- 5.6 Dynamic Model.- 5.7 Surge Control Idea.- 5.8 Controller Design and Stability Analysis.- 5.9 Simulations.- 5.10 Conclusion.- 6 Concluding remarks and further research.- 6.1 Conclusions.- 6.2 Further research.- 6.2.1 Mass flow measurements.- A Stability of the Greitzer model.- B Nomenclature.- C Some Thermodynamic and Fluid Mechanical Relations.- C.1 Flow and Pressure Coefficients.- C.2 Isentropic Processes.- C.3 Mass Balance of the Plenum.- C.4 Flow through a Nozzle.- C.5 Compressor Pressure Rise.- D Including a CCV in the Moore-Greitzer Model.- E Numerical Values Used in Simulations.- F Bounds on the Controller Parameters of Theorem 2.5.
by "Nielsen BookData"