Advanced engineering mathematics
著者
書誌事項
Advanced engineering mathematics
Prentice-Hall International, c1998
2nd ed., International ed.
- : pbk
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Previous ed.: c1988
Includes "Answers to selected exercises" (p. 1282-1314) and index
"Prentice Hall International Editions (PHIPE). Unabridged paperback reprints of established titles ..."-- Back cover
内容説明・目次
内容説明
Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering.
This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.
目次
- I. ORDINARY DIFFERENTIAL EQUATIONS. 1. Introduction to Differential Equations. 2. Equations of First Order. 3. Linear Differential Equations of Second Order and Higher. 4. Power Series Solutions. 5. Laplace Transform. 6. Quantitative Methods: Numerical Solution of Differential Equations. 7. Qualitative Methods: Phase Plane and Nonlinear Differential Equations. II. LINEAR ALGEBRA. 8. Systems of Linear Algebraic Equations
- Gauss Elimination. 9. Vector Space. 10. Matrices and Linear Equations. 11. The Eigenvalue Problem. 12. Extension to Complex Case (Optional). III. SCALAR and VECTOR FIELD THEORY. 13. Differential Calculus of Functions of Several Variables. 14. Vectors in 3-Space. 15.Curves, Surfaces, and Volumes. 16. Scalar and Vector Field Theory. IV. FOURIER SERIES AND PARTIAL DIFFERENTIAL EQUATIONS. 17. Fourier Series, Fourier Integral, Fourier Transform. 18. Diffusion Equation. 19. Wave Equation. 20. Laplace Equation. V. COMPLEX VARIABLE THEORY. 21. Functions of a Complex Variable. 22. Conformal Mapping. 23. The Complex Integral Calculus. 24. Taylor Series, Laurent Series, and the Residue Theorem. Appendix A: Review of Partial Fraction Expansions. Appendix B: Existence and Uniqueness of Solutions of Systems of Linear Algebraic Equations. Appendix C: Table of Laplace Transforms. Appendix D: Table of Fourier Transforms. Appendix E: Table of Fourier Cosine and Sine Transforms. Appendix F: Table of Conformal Maps.
「Nielsen BookData」 より