Limit analysis and concrete plasticity

書誌事項

Limit analysis and concrete plasticity

M.P. Nielsen

(New directions in civil engineering)

CRC Press, c1999

2nd ed

大学図書館所蔵 件 / 20

この図書・雑誌をさがす

注記

Includes bibliography (p. [849]-889) and index

Previous ed. (c1984): by Prentice-Hall, Englewood Cliffs, N.J. [and] London (Prentice-Hall civil engineering and engineering mechanics series)

内容説明・目次

内容説明

Limit Analysis and Concrete Plasticity, Second Edition covers the most relevant topics related to plastic design methods, providing a reliable and superior alternative to existing empirical methods. Fully updated and containing more extensive coverage, this second edition includes numerical methods and computer code for solving problems, incorporating methods into Eurocode 2 - the common concrete standard for the whole of Europe. This edition: Emphasizes practical design, treating almost all the elementary concrete mechanics problems in such a way that the solutions may be directly applied by the designer Details the fundamental problems associated with so-called effectiveness factors Covers many new solutions to specific problems, including concentrated forces, shear walls and deep beams, beams with normal forces and torsional moments, and solutions dealing with membrane effects in slabs Simplifies the treatment of shear in beams and slabs without shear reinforcement or with a modicum of shear reinforcement Extends the chapters on joints and bond strength, showing how plastic theory offers reasonable solutions for most structural problems in reinforced concrete Limit Analysis and Concrete Plasticity explains the basic principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design codes. This scientific understanding of the subject enables the design student or engineer to solve problems more effectively and safely.

目次

Introduction The Theory of Plasticity Constitutive Equations Extremum Principles for Rigid-Plastic Materials The Solution of Plasticity Problems Reinforced Concrete Structures Yield Conditions Concrete Yield Conditions for Reinforced Disks Yield Conditions for Slabs Reinforcement Design The Theory of Plain Concrete Statical Conditions Geometrical Conditions Virtual Work Constitutive Equations The Theory of Plane Strain for Coulomb Materials Applications Disks Statical Conditions Geometrical Conditions Virtual Work Constitutive Equations Exact Solutions for Isotropic Disks The Effective Compressive Strength of Reinforced Disks General Theory of Lower Bound Solutions Strut and Tie Models Shear Walls Homogenous Reinforcement Solutions Design According to the Elastic Theory Beams Beams in Bending Beams in Shear Beams in Torsion Combined Bending, Shear, and Torsion Slabs Statical Conditions Geometrical Conditions Virtual Work, Boundary Conditions Constitutive Equations Exact Solutions for Isotropic Slabs Upper Bound Solutions for Isotropic Slabs Lower Bound Solutions Orthotropic Slabs Analytical Optimum Reinforcement Solutions Numerical Methods Membrane Action Punching Shear of Slabs Introduction Internal Loads or Columns Edge and Corner Loads Concluding Remarks Shear in Joints Introduction Analysis of Joints by Plastic Theory Strength of Different Types of Joints The Bond Strength of Reinforcing Bars Introduction The Local Failure Mechanism Failure Mechanisms Analysis of Failure Mechanisms Assessment of Anchor and Splice Strength Effect of Transverse Pressure and Support Reaction Effect of Transverse Reinforcement Concluding Remarks

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ