Die Entwicklung des Tensorkalküls : vom absoluten Differentialkalkül zur Relativitätstheorie
著者
書誌事項
Die Entwicklung des Tensorkalküls : vom absoluten Differentialkalkül zur Relativitätstheorie
(Science networks, historical studies, Bd. 11)
Birkhäuser, 1994
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Literaturverz. S. 258 - 315
内容説明・目次
内容説明
Die allgemeine Relativitastheorie lasst sich nur mit Hilfe des Tensorkalkuls formulieren. Diesen lernte Einstein 1912 in Form des absoluten Differentialkalkuls kennen. Dessen Schoepfer war Gregorio Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der Theorie der Differentialinvarianten gelang. Der absolute Differentialkalkul passte zur allgemeinen Relativitatstheorie wie ein Schlussel zum Schloss: der in den Jahren 1884-92 von Ricci entwickelte Kalkul erfullte in der Tat genau das physikalische Konzept der allgemeinen Relativitatstheorie, das Einstein 1907-15 ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch moeglich, weil sowohl Ricci innerhalb der Mathematik als auch Einstein innerhalb der Physik vergleichbare Fragen stellten, namlich Fragen nach Invarianten bei speziellen Transformationen. Es wird versucht, den historischen Weg so genau wie moeglich anhand der Quellen nachzuzeichnen. Neu ist die Herausarbeitung des invariantentheoretischen Aspekts, dem gegenuber die Bedeutung der Differentialgeometrie fur die Entwicklung des Tensorkalkuls in den Hintergrund treten muss.
目次
1 Einleitung.- 2 Tensoren ohne Tensorbegriff.- 2.1 Vorformen von Tensoren in der Differentialgeometrie.- 2.1.1 Die Gausssche Flachentheorie.- 2.1.2 Differentialparameter.- 2.1.3 Der Riemannsche Krummungstensor.- 2.1.3.1 Riemann.- 2.1.3.2 Riemanns Nachfolger.- 2.2 Vorformen von Tensoren in der Elastizitatstheorie.- 2.2.1 Der Cauchysche Spannungs- und Verzerrungstensor.- 2.2.2 Weitere Charakteristika des Spannungs- und/oder Verzerrungstensors.- 3 Die Theorie der Formen und Invarianten.- 3.1 Anfange der Formentheorie.- 3.2 Anfange der Invariantentheorie.- 3.2.1 Die britische Schule.- 3.2.2 Ausbau der Formen- und Invariantentheorie.- 4 Die Entwicklung eines Tensorbegriffs und eines Tensorkalkuls.- 4.1 Die Theorie der quadratischen Differentialformen bzw. Differentialinvarianten.- 4.1.1 Die kovariante Ableitung.- 4.1.2 Der absolute Differentialkalkul.- 4.1.2.1 Vorbereitende Arbeiten.- 4.1.2.2 Der Ausbau des absoluten Differentialkalkuls.- 4.1.2.3 Anwendungen.- 4.1.2.4 Gesamtdarstellungen.- 4.1.2.5 Besprechungen.- 4.1.3 Theorie der Differentialinvarianten.- 4.1.3.1 Gruppenkonzept und dessen Verbindung mit dem absoluten Differentialkalkul.- 4.1.3.2 Riccis Konzepte in neuer Symbolik.- 4.1.3.3 Verallgemeinerungen von Riccis Konzepten.- 4.1.3.4 Anwendungen des Gruppenkonzeptes.- 4.1.3.5 Wrights Lehrbuch.- 4.1.3.6 Differentialinvarianten und Vektorrechnung.- 4.1.3.7 Die Theorie der Differentialinvarianten als eigenstandiges Gebiet.- 4.2 Kristallographie.- 4.2.1 Voraussetzungen.- 4.2.2 Voigts Einfuhrung des Tensorbegriffs.- 4.2.3 Tensoren hoeherer Ordnung.- 4.2.4 Tensoranalysis.- 4.2.5 Voigts "Kristallphysik" von 1910.- 4.2.6 Die Rezeption der Voigtschen Tensoren in der Vektorrechnung, Elektrodynamik und Elastizitatstheorie.- 4.2.7 Weiterentwicklung der Voigtschen Tensoren.- 4.3 Vektorrechnung.- 4.3.1 Lineare Vektorfunktionen.- 4.3.2 Dyadics.- 4.3.3 Rezeption.- 4.3.4 Die Synthese mit den Voigtschen Tensoren.- 4.3.5 Weitere Entwicklungen.- 4.3.5.1 Die Binaranalyse.- 4.3.5.2 Die "Omografie vettoriali".- 4.3.5.3 Die Affinoranalysis.- 5 Tensoren in der Relativitatstheorie.- 5.1 Einsteins mathematische Voraussetzungen.- 5.2 Spezielle Relativitatstheorie.- 5.2.1 Minkowskis Raum-Zeit.- 5.2.1.1 Einsteins unmittelbare Reaktion auf Minkowski.- 5.2.2 Vierdimensionale Tensoren, vierdimensionaler Vektorkalkul.- 5.2.2.1 Max Abraham.- 5.2.2.2 Gilbert N. Lewis.- 5.2.2.3 Arnold Sommerfeld.- 5.2.2.4 Max von Laue.- 5.3 Allgemeine Relativitatstheorie.- 5.3.1 Die Rezeption des absoluten Differentialkalkuls in der Differentialgeometrie und in der Physik.- 5.3.2 Einsteins und Grossmanns Zusammenarbeit.- 5.3.3 Die Jahre 1914-1916.- 5.4 Die Geometriesierung der Relativitatstheorie.- 6 Schlussbetrachtung 213.- Namen- und Sachverzeichnis.
「Nielsen BookData」 より