Supersymmetry and trace formulae : chaos and disorder
著者
書誌事項
Supersymmetry and trace formulae : chaos and disorder
(NATO ASI series, Series B,
Kluwer : Plenum Press, c1999
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Proceedings of a NATO Advanced Study Institute on Supersymmetry and Trace Formulae: Chaos and Disorder, held September 8-20, 1997, in Cambridge, United Kingdom"--T.p. verso
"Published in cooperation with NATO Scientific Affairs Division."
Includes bibliographical references and index
内容説明・目次
内容説明
The motion of a particle in a random potential in two or more dimensions is chaotic, and the trajectories in deterministically chaotic systems are effectively random. It is therefore no surprise that there are links between the quantum properties of disordered systems and those of simple chaotic systems. The question is, how deep do the connec tions go? And to what extent do the mathematical techniques designed to understand one problem lead to new insights into the other? The canonical problem in the theory of disordered mesoscopic systems is that of a particle moving in a random array of scatterers. The aim is to calculate the statistical properties of, for example, the quantum energy levels, wavefunctions, and conductance fluctuations by averaging over different arrays; that is, by averaging over an ensemble of different realizations of the random potential. In some regimes, corresponding to energy scales that are large compared to the mean level spacing, this can be done using diagrammatic perturbation theory. In others, where the discreteness of the quantum spectrum becomes important, such an approach fails. A more powerful method, devel oped by Efetov, involves representing correlation functions in terms of a supersymmetric nonlinear sigma-model. This applies over a wider range of energy scales, covering both the perturbative and non-perturbative regimes. It was proved using this method that energy level correlations in disordered systems coincide with those of random matrix theory when the dimensionless conductance tends to infinity.
目次
- Semiclassical Theory of Spectral Statistics and Riemann Zeros
- J.P. Keating. Quantum Chaos: Lessons from Disordered Metals
- A. Altland, et al. Supersymmetric Generalization of Dyson's Brownian Motion (Diffusion)
- T. Guhr. What Happens to the Integer Quantum Hall Effect in Three Dimensions? J.R. Chalker. Trace Formulas in Classical Dynamical Systems
- P. Cvitanovic. Theory of Eigenfunction Scarring
- L. Kaplan, E.J. Heller. Nonequilibrium Effects in the Tunneling Conductance Spectra of Small Metallic particles
- O. Agam. Pair Correlations of Quantum Chaotic Maps from Supersymmetry
- M.R. Zirnbauer. Semiclassical Quantization of Maps and Spectral Correlations
- U. Smilansky. Wave Functions, Wigner Functions and Green Functions of Chaotic Systems
- S. Fishman. Wave Functions in Chaotic Billiards: Supersymmetry Approach
- K.B. Efetov. Correlations of Wave Functions in Disordered Systems
- A.D. Mirlin. Spatial Correlations in Chaotic Eigenfunctions
- M. Srednicki. Level Curvature Distribution Beyond Random matrix Theory
- V.E. Kravtsov, et al. Almost-Hermitian Random Matrices: Applications to the Theory of Quantum Chaotic Scattering and Beyond
- Y.V. Fyodorov. Topological Features of the Magnetic Response in Inhomogeneous Magnetic Fields
- E. Akkermans. Trace Formulas in Classical Dynamical Systems
- M. Wilkinson. From Classical to Quantum Kinetics
- D.E. Khmelnitskii, B.A. Muzykantskii. Stochastic Scattering
- H.A. Weidenmuller. H=xp and the Riemann Zeros
- M.V. Berry, J.P. Keating.
「Nielsen BookData」 より