Computational techniques for modelling learning in economics
著者
書誌事項
Computational techniques for modelling learning in economics
(Advances in computational economics, v. 11)
Kluwer Academic Pub., c1999
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Computational Techniques for Modelling Learning in Economics offers a critical overview of the computational techniques that are frequently used for modelling learning in economics. It is a collection of papers, each of which focuses on a different way of modelling learning, including the techniques of evolutionary algorithms, genetic programming, neural networks, classifier systems, local interaction models, least squares learning, Bayesian learning, boundedly rational models and cognitive learning models. Each paper describes the technique it uses, gives an example of its applications, and discusses the advantages and disadvantages of the technique. Hence, the book offers some guidance in the field of modelling learning in computation economics. In addition, the material contains state-of-the-art applications of the learning models in economic contexts such as the learning of preference, the study of bidding behaviour, the development of expectations, the analysis of economic growth, the learning in the repeated prisoner's dilemma, and the changes of cognitive models during economic transition. The work even includes innovative ways of modelling learning that are not common in the literature, for example the study of the decomposition of task or the modelling of cognitive learning.
目次
- Preface. List of Contributors. Part One: Simulating in Economics. Evolutionary Economics and Simulation
- W. Kwasnicki. Simulation as a Tool to Model Stochastic Processes in Complex Systems
- K.G. Troitzsch. Part Two: Evolutionary Approaches. Learning by Genetic Algorithms in Economics? F. Beckenbach. Can Learning-Agent Simulations Be Used for Computer Assisted Design in Economics? T.C. Price. On the Emergence of Attitudes towards Risk
- S. Huck, et al. Interdependencies, Nearly-decomposability and Adaptation
- K. Frenken, et al. Part Three: Neural Networks and Local Interaction. Neural Networks in Economics
- R. Herbrich, et al. Genetic Algorithms and Neural Networks: A Comparison Based on the Repeated Prisoners Dilemma
- R.E. Marks, H. Schnabl. Local Interaction as a Model of Social Interaction? D.K. Herreiner. Part Four: Boundedly Rational and Rational Models. Memory, Learning and the Selection of Equilibria in a Model with Non-Uniqueness
- E. Barucci. A Behavioral Approach to a Strategic Market Game
- M. Shubik, N.J. Vriend. Bayesian Learning in Optimal Growth Models under Uncertainty
- S.M.N. Islam. Part Five: Cognitive Learning Models. Modelling Bounded Rationality in Agent-based Simulations Using the Evolution of Mental Models
- B. Edmonds. Cognitive Learning in Prisoner's Dilemma Situations
- T. Brenner. A Cognitively Rich Methodology for Modelling Emergent Socioeconomic Phenomena
- S. Moss. Index.
「Nielsen BookData」 より