Algebraic number theory
著者
書誌事項
Algebraic number theory
(Discrete mathematics and its applications / Kenneth H. Rosen, series editor)
Chapman & Hall/CRC, c1999
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 459-463) and index
内容説明・目次
内容説明
From its history as an elegant but abstract area of mathematics, algebraic number theory now takes its place as a useful and accessible study with important real-world practicality. Unique among algebraic number theory texts, this important work offers a wealth of applications to cryptography, including factoring, primality-testing, and public-key cryptosystems.
A follow-up to Dr. Mollin's popular Fundamental Number Theory with Applications, Algebraic Number Theory provides a global approach to the subject that selectively avoids local theory. Instead, it carefully leads the student through each topic from the level of the algebraic integer, to the arithmetic of number fields, to ideal theory, and closes with reciprocity laws. In each chapter the author includes a section on a cryptographic application of the ideas presented, effectively demonstrating the pragmatic side of theory.
In this way Algebraic Number Theory provides a comprehensible yet thorough treatment of the material. Written for upper-level undergraduate and graduate courses in algebraic number theory, this one-of-a-kind text brings the subject matter to life with historical background and real-world practicality. It easily serves as the basis for a range of courses, from bare-bones algebraic number theory, to a course rich with cryptography applications, to a course using the basic theory to prove Fermat's Last Theorem for regular primes. Its offering of over 430 exercises with odd-numbered solutions provided in the back of the book and, even-numbered solutions available a separate manual makes this the ideal text for both students and instructors.
目次
Algebraic Numbers
Origins and Foundations
Algebraic Numbers and Number Fields
Discriminants, Norms, and Traces
Algebraic Integers and Integral Bases
Factorization and Divisibility
Applications of Unique Factorization
Applications to Factoring Using Cubic Integers
Arithmetic of Number Fields
Quadratic Fields
Cyclotomic Fields
Units in Number Rings
Geometry of Numbers
Dirichlet's Unit Theorem
Application: The Number Field Sieve
Ideal Theory
Properties of Ideals
PID's and UFD's
Norms of Ideals
Ideal Classes-The Class Group
Class Numbers of Quadratic Fields
Cyclotomic Fields and Kummer's Theorem--Bernoulli Numbers and Irregular Primes
Cryptography in Quadratic Fields
Ideal Decomposition in Extension Fields
Inertia, Ramification, and Splitting
The Different and Discriminant
Galois Theory and Decomposition
The Kronecker-Weber Theorem
An Application--Primality Testing
Reciprocity Laws
Cubic Reciprocity
The Biquadratic Reciprocity Law
The Stickelberger Relation
The Eisenstein Reciprocity Law
Elliptic Curves, Factoring, and Primality
Appendices
Groups, Modules, Rings, Fields, and Matrices
Sequences and Series
Galois Theory (An Introduction with Exercises)
The Greek Alphabet
Latin Phrases
Solutions to Odd-Numbered Exercises
Bibliograph
List of Symbols
Index (over 1,700 entries)
「Nielsen BookData」 より