Discrete tomography : foundations, algorithms, and applications
著者
書誌事項
Discrete tomography : foundations, algorithms, and applications
(Applied and numerical harmonic analysis / series editor, John J. Benedetto)
Birkhäuser, c1999
- hard : alk. paper
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation.
目次
Preface Contributors Part I. Foundations Discrete Tomography: A Historical Overview \ Attila Kuba, Gabor T. Herman Sets of Uniqueness and Additivity in Integer Lattices \ Peter C. Fishburn, Lawrence A. Shepp Tomopgraphic Equivalence and Switching Operations \ T. Yung Kong, Gabor T. Herman Uniqueness and Complexity in Discrete Tomography \ Richard J. Gardner, Peter Gritzmann Reconstruction of Plane Figures from Two Projections \ Akira Kaneko, Lei Huang Reconstruction of Two-Valued Functions and Matrices \ Attila Kuba Reconstruction of Connected Sets from Two Projections \ Alberto Del Lungo, Maurice Nivat Part II. Algorithms Binary Tomography Using Gibbs Priors \ Samuel Matej, Avi Vardi, Gabor T. Herman, Eilat Vardi Probabilistic Modeling of Discrete Images \ Michael T. Chan, Gabor T. Herman, Emanuel Levitan Multiscale Bayesian Methods for Discrete Tomography \ Thomas Frese, Charles A. Bouman, Ken Sauer An Algebraic Solution for Discrete Tomography \ Andrew E. Yagle Binary Steering of Nonbinary Iterative Algorithms \ Yair Censor, Samuel Matej Reconstruction of Binary Images via the EM Algorithm \ Yehuda Vardi, Cun-Hui Zhang Part III. Applications CT-Assisted Engineering and Manufacturing \ Jolyon A. Browne, Mathew Koshy 3D Reconstruction from Sparse Radiographic Data \ James Sachs, Jr., Ken Sauer Heart Chamber Reconstruction from Biplane Angiography \ Dietrich G.W. Onnasch, Guido P.M. Prause Discrete Tomography in Electron Microscopy \ J.M. Carazo, C.O. Sorzano, E. Rietzel, R. Schroeder, R. Marabini Tomopgraphy on the 3D-Torus and Crystals \ Pablo M. Salzberg, Raul Figueroa A Recursive Algorithm for Diffuse Planar Tomography \ Sarah K. Patch From Orthogonal Projections to Symbolic Projections \ Shi-KuoChang Index
「Nielsen BookData」 より