New ideas in optimization
著者
書誌事項
New ideas in optimization
(Advanced topics in computer science series)
McGraw-Hill, c1999
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [451]-481) and index
内容説明・目次
内容説明
Optimization is a pivotal aspect of software design. The techniques treated in this book represent the leading edge of research as elucidated by the leading researchers, many of whom are the originators of the methods. The volume editors are experienced and respected researchers and the subject is one of growing interest in advanced undergraduate and postgraduate programmes.There are a collection of well-known modern optimization methods being researched and applied to real problems worldwide. These include a variety of local search methods (hillclimbing, simulated annealing, tabu search, ...) and so-called evolutionary computation methods (genetic algorithms, genetic programming, evolutionary programming...). In recent years, a range of novel ideas have emerged in this research community, proposing new algorithms which are interestingly different from the current well-studied crop. In particular, these new ideas include: Ant Colony based optimisation, Scatter Search, Differential Evolution, Immune System Methods, Optima Linking, and Parallel Distributed Genetic Programming.
目次
Section 1: Ant Colony Optimization.
Section 2: Differential Evolution.
Section 3: Scatter Search and Path Relinking.
Section 4: Immune System Methods.
Section 5: Memetic Algorithms.
Section 6: Emerging Techniques and Extensions: Parallel Distributed Genetic Programming.
Co-evolutionary methods.
Guided Local Search.
Stepwise Adaptive Weight Algorithms.
Particle Swarm Methods.
「Nielsen BookData」 より