Magnetocumulative generators

Author(s)
    • Altgilbers, Larry L.
Bibliographic Information

Magnetocumulative generators

Larry L. Altgilbers ... [et al.]

(High-pressure shock compression of condensed matter)

Springer, c2000

Search this Book/Journal
Note

Includes bibliographical references and index

Description and Table of Contents

Description

A discussion of explosive pulsed power systems and their applications, this book consists of 7 chapters. The first five describe the basic physics of these sources and their ancillary equipment, based on a manual for training engineers in Russia. Chapter 6 is a description of codes and methodologies used at Loughborough University in the UK to build flux compressors, while Chapter 7 covers two specific applications: high power lasers and high power microwave sources. The book introduces all types of explosive power sources and their ancillary equipment, the procedures required to build them, and specific applications.

Table of Contents

1 Explosive-Driven Power Sources.- 1.1 Introduction.- 1.2 Overview of Explosive-Driven Power Sources.- 1.3 Magnetocumulative Generator History.- 1.4 Electromagnetic Theory.- 1.4.1 Field Theory: Maxwell's Equations.- 1.4.2 Circuit Equations: Kirchhoff's Equations.- 1.5 Electromagnetic Phenomena.- 1.5.1 Magnetic Pressure and Diffusion.- 1.5.2 Magnetic Force.- 1.5.3 Magnetic Pressure.- 1.5.4 Electric Fields.- 1.6 Shock and Detonation Waves.- 1.7 Explosives and Explosive Components.- 1.7.1 Categories of Explosives.- 1.7.2 Explosive Components.- 1.8 Introduction to MCGs.- 1.8.1 Circuit Equations.- 1.8.2 Field Equations.- 1.8.3 Magnetocumulative Generator Performance.- References.- 2 Magnetocumulative Generator Physics and Design.- 2.1 Conditions That Affect Magnetic Field Compression.- 2.1.1 Field Diffusion.- 2.1.2 Liner Compressibility.- 2.1.3 Conductivity Change.- 2.1.4 Surface Instability.- 2.2 Theory of Magnetocumulative Current Generators.- 2.3 Current Generator Design Issues.- 2.3.1 Eliminating Electric Breakdown.- 2.3.2 Increasing the Energy Amplification Factor.- 2.3.3 Delivering the Maximum Possible Energy to the Load.- 2.3.4 Attaining the Maximum Possible Gain.- 2.3.5 Unconstrained Energy Amplification.- References.- 3 Magnetocumulative Generators.- 3.1 Introduction.- 3.2 Classifications of MCGs.- 3.3 Coaxial MCGs.- 3.4 Spiral (Helical) MCGs.- 3.5 Plate MCGs.- 3.6 Loop MCGs.- 3.7 Disk MCGs.- 3.8 Semiconductor MCGs.- 3.8.1 Theory of Operation.- 3.8.2 SWMCG Working Substances.- 3.8.3 SWMCG Designs.- 3.9 Cascaded MCGs.- 3.10 Short-Pulse MCGs.- References.- 4 Pulse-Forming Networks.- 4.1 High-Speed Opening Switches.- 4.1.1 Explosive Opening Switches.- 4.1.2 Electroexplosive Switches.- 4.1.3 Explosive Plasma Switches.- 4.2 Pulsed Transformers.- 4.3 Spark Gap Switches.- 4.4 Pulse-Forming Lines.- 4.5 High-Voltage MCG Systems.- 4.5.1 Magnetic Flux Trapping.- 4.5.2 Flux Trapping and No Transformer.- 4.5.3 Flux Trapping and Transformers.- References.- 5 Electrical Loads.- 5.1 Direct Connection to a Load.- 5.1.1 Case 1: Rc = 0, L(t) = L0exp(-?t).- 5.1.2 Case 2: Rc = 0, L = L0(1 - ?t).- 5.1.3 Case 3: Rc ? 0, L= L0(l - ?t).- 5.1.4 Case 4: CL =0.- 5.1.5 Case 5: CL = 0, RC =0.- 5.2 Connection Through Pulsed Transformers.- 5.2.1 Case 1: Complex Loads.- 5.2.2 Case 2: Resistive and Inductive Loads.- 5.2.3 Case 3: R1 = 0 and I20 =0.- 5.2.4 Case 4: Low-Resistance Loads.- 5.2.5 Case 5: R1 = 0, R2 = 0, and CL =0.- 5.2.6 Case 6: Active Load, When R1 =0.- 5.2.7 Case 7: Pulse-Shaping Transformers.- 5.3 Connecting Through an Electroexplosive Switch.- 5.3.1 Complex Load.- 5.3.2 Active Load.- 5.3.3 Effects of Switch Inductance on Energy Coupling Coefficient for an Inductive Load.- 5.4 Pulsed Transformer and Electroexplosive Switch.- 5.4.1 Complex Load.- 5.4.2 Active Load.- References.- 6 Design, Construction, and Testing.- 6.1 A Brief Description of FLEXY I.- 6.2 Computer Models.- 6.2.1 Simple Zero-Order Model for a Helical MCG.- 6.2.2 Simple 2D Model for a Helical MCG.- 6.2.3 Comparison to Other Codes.- 6.3 Helical Generator Design.- 6.3.1 Basic Input Data.- 6.3.2 Helical Coil Design Rules.- 6.4 Construction of the FLEXY I.- 6.5 Testing the FLEXY I.- 6.6 Comparison of Theoretical and Experimental Results.- 6.7 Summary.- References.- 7 Experimental Methods and Techniques.- 7.1 Experimental Methods.- 7.1.1 Electromagnetic Techniques.- 7.1.2 Detonic Techniques.- 7.2 Explosive Pulsed Power Laboratory.- 7.3 Testing Fast Switches and Conditioning Circuits.- 7.3.1 Exploding Foil Empirical Model.- 7.3.2 Magnetic Flux Compressor/Opening Switch Experiments.- 7.3.3 Opening and Closing Exploding Foil Switches.- 7.3.4 Faster Switching Techniques.- 7.3.5 Optimizing Exploding Foils.- 7.4 Magnetic Coupling between MCGs.- 7.4.1 The FLUXAR System.- 7.4.2 FLUXAR Working Equations.- 7.4.3 FLUXAR Techniques and Performance.- 7.4.4 A Case Study.- 7.5 Limitations of Helical MCGs.- 7.6 Summary.- References.- 8 Applications: Lasers and Microwaves.- 8.1 Lasers.- 8.1.1 Neodymium Solid-State Lasers.- 8.1.2 Photodissociation Iodine Laser.- 8.2 High-Power Microwave Sources.- 8.2.1 Autonomous Power Supplies for Microwave Sources.- 8.2.2 Virtual Cathode Oscillators.- 8.2.3 Multiwave Cerenkov Generators.- 8.2.4 Magnetically Insulated Linear Oscillators.- 8.2.5 Transition Radiation Generators.- 8.3 Direct-Drive Devices.- 8.3.1 Types of EMAs.- 8.3.2 Explosive Magnetic Generator of Frequency.- 8.3.3 Cylindrical Shock-Wave Source.- 8.4 Summary.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top