Linear and nonlinear crack growth using boundary elements
著者
書誌事項
Linear and nonlinear crack growth using boundary elements
(Topics in engineering, Vol. 36)
WIT, c2000
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
During the last few decades numerical methods have emerged as powerful tools for assessing problems involving fatigue crack propagation. With the rapid development of these methods in stress analysis, and the availability of high-speed digital computers, it is now possible to make reasonably accurate estimates of fatigue crack propagation rates. The simulation of general mixed-mode crack growth requires the capability to predict the direction and amount of crack growth for each given load increment, as well as the robustness to update the numerical model to account for the changing crack geometry. This book brings together descriptions of three-dimensional boundary element methods for the analysis of fatigue crack problems in linear and nonlinear fracture mechanics. In order to overcome the mathematical degeneration associated with the solitary use of the displacement boundary integral equation for cracked bodies, the methods depicted rely on formulations based on two independent boundary integral equations: the dual boundary element method.The author demonstrates the effective implementation of the methods, and devotes special attention to the description of accurate algorithms for the evaluation of singular and near-singular integrals in the dual equations.
目次
- Introduction: Fracture Mechanics
- Fatigue Crack Growth
- Numerical Modelling
- Overview of the Book. Solid and Fracture Mechanics Fundamentals: Notation and Basic Postulates
- Elasticity
- Elastoplasticity
- Linear Elastic Fracture Mechanics
- Elastoplastic Fracture Mechanics
- Fatigue Crack Propagation
- Conclusion. The Dual Boundary Element Method for Three-Dimensional Cracked Bodies: Introduction
- BEM for Three-Dimensional Elasticity Problems
- The Dual Boundary Element Method
- Modelling and Discretization Strategy
- Conclusion. Three-Dimensional DBEM Analysis for Fatigue Crack Growth: Introduction
- Special Crack Tip Elements
- Treatment of the Integrals
- Out-of-Core Solution of DBEM Matrix
- Crack Extension Analysis
- Examples, Conclusion. A BEM for Three-Dimensional Elastoplastic Problems: Introduction
- Governing Equations
- Initial Strain Boundary Integral Formulation
- Boundary Integral Representation of the Stresses
- Discretization Strategy
- Treatment of the Integrals
- Evaluation of Boundary Stresses
- System Matrices Assembly
- Nonlinear Solution Algorithm
- Examples
- Conclusion. The Elastoplastic Dual Boundary Element Method in Three Dimensions: Introduction
- Boundary Element Formulation
- Discretization Strategy
- Nonlinear Solution Algorithm
- Treatment of Integrals in EPDBEM
- Examples
- Conclusion. BEM Analysis of Fracture Problems using the Energy Domain Integral: Introduction
- J-Type Parameters for 3D
- The Energy Domain Integral
- Stress, Strain and Displacement Derivatives Computation
- Boundary Element Implementation
- Examples, Conclusion. Full-Penetration Welded Joint: Introduction
- Experimental Analysis
- Elastic Crack Growth Analysis
- Elastoplastic Crack Growth Analysis
- Discussion
- Conclusion.
「Nielsen BookData」 より