Qualitative theory of hybrid dynamical systems
著者
書誌事項
Qualitative theory of hybrid dynamical systems
(Control engineering / series editor, William S. Levine)
Birkhäuser, c2000
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.
目次
1 Introduction.- 1.1 Hybrid Dynamical Systems.- 1.2 Two Contrasting Examples of Discretely Controlled Continuous Variable Systems.- 1.3 The Main Goal of This Book.- 1.4 Organization of the Book.- 1.5 List of Notations.- 2 Qualitative Analysis of Some Simple Hybrid Dynamical Systems.- 2.1 Introduction.- 2.2 Differential Automata and Their Trajectories.- 2.3 Cyclic Linear Differential Automata.- 2.4 Qualitative Analysis of Cyclic Linear Differential Automata.- 2.5 Switched Server Systems with a Cyclic Switching Policy.- 2.6 Switched Server Systems with Several Limit Cycles.- 2.7 Qualitative Analysis of Closed Switched Server Systems.- 2.8 Essentially Non-Periodic Dynamics of Switched Arrival Systems.- 3 General Theory of Multivalued Differential Automata.- 3.1 Introduction.- 3.2 Multivalued Differential Automata.- 3.2.1 Basic assumptions and definitions.- 3.2.2 Illustrative examples.- 3.2.3 Invariant sets.- 3.2.4 A partial classification of points in the phase space.- 3.2.5 Deterministic and well-posed systems.- 3.2.6 The skeleton and the backstepping mapping.- 3.2.7 Asymptotically stable limit cycles.- 3.3 Decomposition of Well-Posed Differential Automata.- 3.4 Existence of Periodic Trajectories.- 3.5 Proofs of the Theorems and Lemmas from Section 3.2.- 3.6 Proof of Theorem 3.2.26.- 3.7 Proofs of the Theorems from Sections 3.3 and 3.4.- 3.7.1 Proof of Theorem 3.4.3.- 4 Two-Dimensional Hybrid Dynamical Systems.- 4.1 Introduction.- 4.2 An Analog of the Poincare-Bendixon Theorem.- 4.2.1 Basic assumptions.- 4.2.2 A simple periodic dynamics.- 4.2.3 A criterion for a simple periodic dynamics.- 4.3 A Switched Arrival System with Three Buffers.- 4.4 A Switched Server System with Three Buffers.- 4.5 Proofs of the Statements from Section 4.2.- 4.5.1 Proofs of the lemmas from Section 4.2.- 4.5.2 Proof of Theorem 4.2.10 and the remarks following it.- 5 Limit Cycles in Hybrid Dynamical Systems with Constant Derivatives: General Theory.- 5.1 Introduction.- 5.2 Basic Assumptions and Definitions.- 5.2.1 Multivalued differential automata with constant derivatives.- 5.2.2 Key assumptions.- 5.3 Criteria for Existence and Stability of Limit Cycles.- 5.3.1 A complement concerning deterministic systems.- 5.4 Proofs of the Lemmas from Section 5.2.- 5.5 Proofs of the Theorems and Lemmas from Section 5.3..- 5.6 Proofs of the Theorem and Lemmas from Subsection 5.3.1.- 6 Limit Cycles in Hybrid Dynamical Systems with Constant Derivatives: Examples.- 6.1 Introduction.- 6.2 Qualitative Analysis of a Switched Server System.- 6.2.1 Description of a switched server system.- 6.2.2 A cyclic control policy.- 6.2.3 The Clear-the-Largest-Buffer-Level Policy.- 6.2.4 Structural stability of a switched server system.- 6.3 A Switched Arrival System with Three Buffers.- 6.4 Qualitative Analysis of Switched Single Server Flow Networks.- 6.4.1 Single server flow networks.- 6.4.2 A cyclic control policy.- 6.4.3 A composed cyclic control policy.- 6.4.4 A combined control policy.- 7 Globally Periodic Behavior of Switched Single Server Flow Networks.- 7.1 Introduction.- 7.2 Description of Switched Single Server Flow Networks.- 7.3 Analysis of Switched Single Server Flow Networks.- 8 Regularizability of Switched Multiple Server Flow Networks.- 8.1 Introduction 315 8.2 Description of Switched Multiple Server Flow Networks.- 8.3 Regularizable Switched Multiple Server Flow Networks.- 8.4 Illustrative Example.- 9 Open Problems.- 9.1 Introduction.- 9.2 Switched Server Systems.- 9.3 Essentially Nonperiodic Multidimensional Switched Arrival Systems.- 9.4 Switched Server/Arrival Systems with Several Servers.- 9.5 A Generalized Processor Sharing Model.- 9.6 Stabilizability of Switched Multiple Server Flow Networks.- 9.7 Chaotic Switched Flow Networks.- 9.8 Existence and Global Stability of Limit Cycles in Nonlinear Differential Automata.- References.
「Nielsen BookData」 より