Materials for high temperature engineering applications
Author(s)
Bibliographic Information
Materials for high temperature engineering applications
(Engineering materials)(Engineering online library)
Springer, c2000
Available at / 12 libraries
-
No Libraries matched.
- Remove all filters.
Note
Bibliographical references: p. [148]-158
Includes index
Description and Table of Contents
Description
This concise survey describes the requirements on materials operating in high-temperature environments and the processes that increase the temperature capability of metals, ceramics, and composites. The major part deals with the applicable materials and their specific properties, with one entire chapter devoted to coatings. Written for engineering and science students, researchers, and managers in industry.
Table of Contents
1 Introduction.- 1.1 Need for High Temperature Materials.- 1.2 High Temperature Materials.- 1.3 Historical Development of High Temperature Materials ....- 2 Design and Manufacture.- 2.1 Plant Design and Material Selection.- 2.2 Component Manufacture.- 2.3 Process Models.- 2.4 Component Life Extension.- 3 Requirements of High Temperature Materials.- 3.1 Environmental Resistance.- 3.1.1 Oxidation.- 3.1.2 Sulphidation.- 3.1.3 Salt- and Ash-Deposit Corrosion.- 3.1.4 Carburisation.- 3.2 Erosion.- 3.3 Wear.- 3.4 Mechanical Behaviour.- 3.4.1 Zero Time Deformation.- 3.4.2 Creep.- 3.4.3 Mechanical Fatigue.- 3.4.4 Thermo-Mechanical Fatigue.- 3.4.5 Corrosion-Fatigue.- 3.5 Physical Properties.- 4 Increasing Temperature Capability.- 4.1 Metallic Materials.- 4.1.1 Solid Solution Strengthening.- 4.1.2 Precipitation Strengthening.- 4.1.3 Dispersion Strengthening.- 4.1.4 Grain Size and Grain Boundary Effects.- 4.1.5 Environmental Resistance.- 4.2 Ceramic Materials.- 4.2.1 Phase Control.- 4.2.2 Defect Tolerance.- 4.2.3 Thermal Shock Resistance.- 4.3 Composite Materials.- 5 Steels.- 5.1 Ferritic Heat Resistant Materials.- 5.2 Creep Resisting Martensitic Steels.- 5.3 Austenitic Steels.- 5.3.1 Corrosion Resistant Austenitic Steels.- 5.3.2 High Strength Austenitic Steels.- 5.4 Controlled Transformation Stainless Steels.- 6 Cast Iron.- 6.1 Grey Cast Irons.- 6.2 Spheroidal Graphite Irons.- 6.3 Austenitic Irons.- 7 Nickel Alloys.- 7.1 Oxidation and Corrosion Resistant Nickel Alloys.- 7.2 Nickel Superalloys.- 7.2.1 Alloy Composition-Dominated Developments.- 7.2.2 Developments Dependent on Process and Alloy Composition.- 7.2.3 Process Dominated Developments.- 8 Cobalt Alloys.- 9 Refractory Metals.- 10 Titanium.- 10.1 Production.- 10.2 Alloys.- 10.3 Component Manufacture.- 11 Intermetallic Materials.- 11.1 Titanium Aluminides.- 11.2 Nickel Aluminides.- 11.3 Iron Aluminides.- 11.4 Speculative Intermetallics.- 12 Cermets.- 12.1 Cemented Carbide Cutting Tools.- 12.2 Wear Resistant Coatings.- 13 Refractories and Insulating Materials.- 14 Engineering Ceramics.- 14.1 Manufacture.- 14.2 Properties.- 14.3 Alumina.- 14.4 Zirconia.- 14.5 Silicon Carbide.- 14.6 Silicon Nitride.- 14.7 Glass Ceramics.- 15 High Temperature Composite Materials.- 15.1 Metal Matrix Composites.- 15.2 Titanium Matrix Composites.- 15.3 Carbon and Carbon-Carbon Composites.- 15.4 Ceramic Matrix Composites.- 15.5 Intermetallic Matrix Composites.- 16 Coatings for High Temperature Materials.- 16.1 Corrosion/Oxidation Resistant Coatings.- 16.2 Thermal Barrier coats.- References.
by "Nielsen BookData"