Logic-based methods for optimization : combining optimization and constraint satisfaction
著者
書誌事項
Logic-based methods for optimization : combining optimization and constraint satisfaction
(Wiley-Interscience series in discrete mathematics and optimization)
John Wiley & Sons, c2000
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 463-481) and index
内容説明・目次
内容説明
A pioneering look at the fundamental role of logic in optimization and constraint satisfaction
While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation. Timely, original, and thought-provoking, Logic-Based Methods for Optimization:
* Demonstrates the advantages of combining the techniques in problem solving
* Offers tutorials in constraint satisfaction/constraint programming and logical inference
* Clearly explains such concepts as relaxation, cutting planes, nonserial dynamic programming, and Bender's decomposition
* Reviews the necessary technologies for software developers seeking to combine the two techniques
* Features extensive references to important computational studies
* And much more
目次
Some Examples.
The Logic of Propositions.
The Logic of Discrete Variables.
The Logic of 0-1 Inequalities.
Cardinality Clauses.
Classical Boolean Methods.
Logic-Based Modeling.
Logic-Based Branch and Bound.
Constraint Generation.
Domain Reduction.
Constraint Programming.
Continuous Relaxations.
Decomposition Methods.
Branching Rules.
Relaxation Duality.
Inference Duality.
Search Strategies.
Logic-Based Benders Decomposition.
Nonserial Dynamic Programming.
Discrete Relaxations.
References.
Index.
「Nielsen BookData」 より