Data mining : concepts and techniques

書誌事項

Data mining : concepts and techniques

Jiawei Han, Micheline Kamber

(The Morgan Kaufmann series in data management systems)

Morgan Kaufmann Publishers, c2001

大学図書館所蔵 件 / 55

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 501-531) and index

内容説明・目次

内容説明

Here's the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. "Data Mining: Concepts and Techniques" equips you with a sound understanding of data mining principles and teaches you proven methods for knowledge discovery in large corporate databases. Written expressly for database practitioners and professionals, this book begins with a conceptual introduction designed to get you up to speed. This is followed by a comprehensive and state-of-the-art coverage of data mining concepts and techniques. Each chapter functions as a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. Wherever possible, the authors raise and answer questions of utility, feasibility, optimization, and scalability, keeping your eye on the issues that will affect your project's results and your overall success. "Data Mining: Concepts and Techniques" is the master reference that practitioners and researchers have long been seeking. It is also the obvious choice for academic and professional classrooms. The classroom features that are available online include: instructor's manual - course slides (in PowerPoint) - course supplementary readings - sample assignments and course projects. It offers a comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data. It is organized as a series of stand-alone chapters so you can begin anywhere and immediately apply what you learn. It presents dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects. It provides in-depth, practical coverage of essential data mining topics, including OLAP and data warehousing, data preprocessing, concept description, association rules, classification and prediction, and cluster analysis. It addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields.

目次

1 Introduction 2 Data Warehouse and OLAP Technology for Data Mining 3 Data Preparation 4 Data Mining Primitives, Languages, and System Architectures 5 Concept Description: Characterization and Comparison 6 Mining Association Rules in Large Databases 7 Classification and Prediction 8 Cluster Analysis 9 Mining Complex Types of Data 10 Data Mining Applications and Trends in Data Mining Appendix A An Introduction to Microsoft's OLE DB for Data Mining Appendix B An Introduction to DBMiner Bibliography

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA48345129
  • ISBN
    • 1558604898
  • LCCN
    00042822
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    San Francisco ; Tokyo
  • ページ数/冊数
    xxiv, 550 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ