Physics meets mineralogy : condensed matter physics in geosciences
著者
書誌事項
Physics meets mineralogy : condensed matter physics in geosciences
Cambridge University Press, 2000
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Physics Meets Mineralogy: Condensed Matter Physics in the Geosciences describes the interaction between geophysics and condensed matter physics. Condensed matter physics leads to a 'first-principles' way of looking at crystals, enabling physicists and mineralogists to study the rich and sometimes unexpected behaviour that minerals exhibit under the extreme conditions, such as high pressure and high temperature, found deep within the earth. Leading international researchers from both geosciences and condensed matter physics discuss this interdisciplinary field. An excellent summary for specialists and graduate students researching mineralogy and crystallography.
目次
- Preface
- 1. Physics and mineralogy: the current confluence H. Aoki, Y. Syono and R. Hemley
- 2.1 Density functional theory in geophysics Lars Stixrude
- 2.2 Crystallographic orbits and their application to structure types Takeo Matsumoto
- 2.3 Accuracy in X-ray diffraction Larry W. Finger
- 2.4 Statistical analysis of phase-boundary observations Abby Kavner, Terry Speed and Raymond Jeanloz
- 3.1 A search for a connection between bond strength, bond length, and electron distributions G. V. Gibbs, M. Boisen, Jr. and F. C. Hill
- 3.2 MgO - the simplest oxide R. E. Cohen
- 3.3 First-principles theoretical study on the high-pressure phases of MnO and FeO: normal and inverse structures Z. Fang, H. Sawada, I. Solovyev and T. Miyazaki
- 3.4 A computer simulation approach to the thermoelastic, transport and melting properties of lower mantle phases Atul Patel, Lidunka Vocadlo and David Price
- 4.1 Polymorphism in crystalline and amorphous silica at high pressures Russell J. Hemley, James Badro and David M. Teter
- 4.2 Shock-induced phase transition from rutile type structure from the viewpoint of computer simulation Keiji Kusaba, Yasuhiko Syono, and Yoshito Matsui
- 4.3 Lattice instabilities examined by X-ray diffractometry and molecular dynamics Takamitsu Yamanaka and Taku Tsuchiya
- 4.4 Effect of hydrostaticity on the phase transformations of Cristobalite Takchiko Yagi and Masaaki Yamakata
- 5.1 Opportunities in diversity of crystal structures - a view from condensed-matter physics Hideo Aoki
- 5.2 Theoretical search for new materials: low temperature compression of graphitic layered materials S. Tsuneyuki, Y. Tateyama, T. Ogitsu and K. Kusakabe
- 5.3 H ... H interactions and order-disorder at high-pressure in layered hydroxides and dense hydrous phases J. B. Parise, H. Kagi, J. S. Loveday, R. J. Nelmes and W. M. Marshall
- 6.1 Comparison of pair potential models for the simulation of liquid SiO2: thermodynamic, angular distribution and diffusional properties M. Hemmati and C. A. Angell
- 6.2 Transport properties of silicate melts at high pressure Brent T. Poe and David C. Rubie
- 6.3 Structural characterization of oxide melts with advanced X-ray diffraction methods Yoshio Waseda and Kazumasa Sugiyama
- 6.4 A computer simulation approach for the prediction of trace element partitioning between crystal and melt Masami Kanzaki.
「Nielsen BookData」 より