A dual boundary element formulation for three-dimensional fracture analysis
著者
書誌事項
A dual boundary element formulation for three-dimensional fracture analysis
(Topics in engineering, v. 37)
WIT Press, c2000
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [205]-216
内容説明・目次
内容説明
This volume presents the dual boundary element formulation which uses continuous elements in three dimensions, and applies it to the analysis of geomechanical fracture problems and fatigue crack growth. The method overcomes the mathematical degeneration associated with the solitary use of the displacement boundary integral equation for cracked bodies by introducing an additional independent boundary integral equation on one of the crack surfaces. Effective implementation is achieved through the use of accurate algorithms for the singular and near-singular integrals in the dual equations. Two new approaches which enable discretisation of crack surfaces with continuous elements are considered, and special crack front elements to accurately model the square root variation of the displacement field near the crack front are developed. There is also discussion of implementation on MIMD computer architecture.The author then moves on to give two different techniques for the evaluation of stress intensity factors, both based on crack-opening-displacements, and to explore applications in seam extraction and in hydraulic fracture by the introduction of spring constraints between the crack surfaces.
Finally, the method is extended to the analysis of fatigue crack growth, the accuracy and efficiency of which is demonstrated through a number of mixed-mode examples including both embedded and edge cracks. Contents: Introduction; Basic Elasticity and Fracture Mechanics; The Boundary Element Method; The Three-Dimensional Dual Boundary Element Method; Enriched Elements for the Evaluation of the Traction BIE; The Dual Boundary Element Method for Three-Dimensional Crack Analysis; Application of the DBEM to Crack Analysis in Geomechanics; Application of the DBEM to Three-Dimensional Crack Growth Analysis; Conclusions; Bibliography; Appendices.
目次
- Introduction: General
- Fracture Mechanics
- Geomechanics
- Numerical Methods
- Boundary Element Methods in Fracture Mechanics. Basic Elasticity and Fracture Mechanics: Introduction
- Three Dimensional Elasticity
- Fracture Mechanics Fundamentals
- Analysis of Crack Growth
- Summary. The Boundary Element Method: Introduction
- Historical Background
- The Three-Dimensional BEM for Elasticity
- Application to Cracked Bodies
- Summary. The Three-Dimensional Dual Boundary Element Method: Introduction
- Traction Boundary Integral Equation
- Dual Boundary Element Formulation
- Treatment of Singular Integral
- Evaluation of the Traction BIE with Continuous Elements
- Summary. Enriched Elements for the Evaluation of the Traction BIE: Introduction
- The Displacement Derivative BIE
- Continuity Requirements
- Enriched Element
- Evaluation of Free Term Coefficients
- Conversion to the Traction BIE
- Boundary Stress Evaluation
- Summary. The Dual Boundary Element Method for Three-Dimensional Crack Analysis: Introduction
- Near-Singular Integration
- Dual Boundary Element Formulation
- Implementation on MIMD Computer Architecture
- Crack Front Elements
- Stress Intensity Factor Evaluation
- Numerical Examples
- Summary. Application of the DBEM to Crack Analysis in Geomechanics: Introduction
- Numerical Implementation
- Summary. Application of the DBEM to Three-Dimensional Crack Growth Analysis: Introduction
- Crack Propagation Simulation
- Numerical Examples under Tension
- Summary. Conclusions: Final Conclusions
- Future Work.
「Nielsen BookData」 より