Advances in probabilistic and other parsing technologies
著者
書誌事項
Advances in probabilistic and other parsing technologies
(Text, speech, and language technology, v. 16)
Kluwer Academic Publishers, c2000
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Parsing technology is concerned with finding syntactic structure in language. In parsing we have to deal with incomplete and not necessarily accurate formal descriptions of natural languages. Robustness and efficiency are among the main issuesin parsing. Corpora can be used to obtain frequency information about language use. This allows probabilistic parsing, an approach that aims at both robustness and efficiency increase. Approximation techniques, to be applied at the level of language description, parsing strategy, and syntactic representation, have the same objective. Approximation at the level of syntactic representation is also known as underspecification, a traditional technique to deal with syntactic ambiguity.
In this book new parsing technologies are collected that aim at attacking the problems of robustness and efficiency by exactly these techniques: the design of probabilistic grammars and efficient probabilistic parsing algorithms, approximation techniques applied to grammars and parsers to increase parsing efficiency, and techniques for underspecification and the integration of semantic information in the syntactic analysis to deal with massive ambiguity.
The book gives a state-of-the-art overview of current research and development in parsing technologies. In its chapters we see how probabilistic methods have entered the toolbox of computational linguistics in order to be applied in both parsing theory and parsing practice. The book is both a unique reference for researchers and an introduction to the field for interested graduate students.
目次
- List of Figures. List of Tables. Acknowledgements. 1. New Parsing Technologies
- H. Bunt, A. Nijholt. 2. Encoding Frequency Information in Lexicalized Grammars
- J. Carroll, D. Weir. 3. Bilexical Grammars and Their Cubic-Time Parsing Algorithms
- J. Eisner. 4. Probabilistic Feature Grammars
- J. Goodman. 5. Probabilistic GLR Parsing
- K. Inui, et al. 6. Probabilistic Parsing Using Left Corner Language Models
- C. Manning, B. Carpenter. 7. A New Parsing Method Using a Global Association Table
- J. Yoon, et al. 8. Towards a Reduced Commitment, D-Theory Style TAG Parser
- J. Chen, K. Vijay-Shanker. 9. Probabilistic Parse Selection Based on Semantic Co-occurrences
- E. Hektoen. 10. Message-Passing Protocols for Object-Oriented Parsing
- U. Hahn, et al. 11. SuperTagging for Partial Parsing. 12. Regular Approximation of CFLs: A Grammatical View
- M.-J. Nederhof. 13. Parsing By Successive Approximation
- H. Schmid. Index.
「Nielsen BookData」 より