Mathematical methods of quantum optics
著者
書誌事項
Mathematical methods of quantum optics
(Springer series in optical sciences, v. 79)
Springer, c2001
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical reference (p. [277]-281) and index
内容説明・目次
内容説明
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
目次
1. Basic Quantum Mechanics.- 1.1 Postulates of Quantum Mechanics.- 1.1.1 Postulate 1.- 1.1.2 Postulate 2.- 1.1.3 Postulate 3.- 1.1.4 Postulate 4.- 1.1.5 Postulate 5.- 1.2 Geometric Phase.- 1.2.1 Geometric Phase of a Harmonic Oscillator.- 1.2.2 Geometric Phase of a Two-Level System.- 1.2.3 Geometric Phase in Adiabatic Evolution.- 1.3 Time-Dependent Approximation Method.- 1.4 Quantum Mechanics of a Composite System.- 1.5 Quantum Mechanics of a Subsystem and Density Operator.- 1.6 Systems of One and Two Spin-1/2s.- 1.7 Wave-Particle Duality.- 1.8 Measurement Postulate and Paradoxes of Quantum Theory.- 1.8.1 The Measurement Problem.- 1.8.2 Schroedinger's Cat Paradox.- 1.8.3 EPR Paradox.- 1.9 Local Hidden Variables Theory.- 2. Algebra of the Exponential Operator.- 2.1 Parametric Differentiation of the Exponential.- 2.2 Exponential of a Finite-Dimensional Operator.- 2.3 Lie Algebraic Similarity Transformations.- 2.3.1 Harmonic Oscillator Algebra.- 2.3.2 The SU(2) Algebra.- 2.3.3 The SU(1,1) Algebra.- 2.3.4 The SU(m) Algebra.- 2.3.5 The SU(m, n) Algebra.- 2.4 Disentangling an Exponential.- 2.4.1 The Harmonic Oscillator Algebra.- 2.4.2 The SU(2) Algebra.- 2.4.3 SU(1,1) Algebra.- 2.5 Time-Ordered Exponential Integral.- 2.5.1 Harmonic Oscillator Algebra.- 2.5.2 SU (2) Algebra.- 2.5.3 The SU(1,1) Algebra.- 3. Representations of Some Lie Algebras.- 3.1 Representation by Eigenvectors and Group Parameters.- 3.1.1 Bases Constituted by Eigenvectors.- 3.1.2 Bases Labeled by Group Parameters.- 3.2 Representations of Harmonic Oscillator Algebra.- 3.2.1 Orthonormal Bases.- 3.2.2 Minimum Uncertainty Coherent States.- 3.3 Representations of SU(2).- 3.3.1 Orthonormal Representation.- 3.3.2 Minimum Uncertainty Coherent States.- 3.4 Representations of SU(1, 1).- 3.4.1 Orthonormal Bases.- 3.4.2 Minimum Uncertainty Coherent States.- 4. Quasiprobabilities and Non-classical States.- 4.1 Phase Space Distribution Functions.- 4.2 Phase Space Representation of Spins.- 4.3 Quasiprobabilitiy Distributions for Eigenvalues of Spin Components.- 4.4 Classical and Non-classical States.- 4.4.1 Non-classical States of Electromagnetic Field.- 4.4.2 Non-classical States of Spin-1/2s.- 5. Theory of Stochastic Processes.- 5.1 Probability Distributions.- 5.2 Markov Processes.- 5.3 Detailed Balance.- 5.4 Liouville and Fokker-Planck Equations.- 5.4.1 Liouville Equation.- 5.4.2 The Fokker-Planck Equation.- 5.5 Stochastic Differential Equations.- 5.6 Linear Equations with Additive Noise.- 5.7 Linear Equations with Multiplicative Noise.- 5.7.1 Univariate Linear Multiplicative Stochastic Differential Equations.- 5.7.2 Multivariate Linear Multiplicative Stochastic Differential Equations.- 5.8 The Poisson Process.- 5.9 Stochastic Differential Equation Driven by Random Telegraph Noise.- 6. The Electromagnetic Field.- 6.1 Free Classical Field.- 6.2 Field Quantization.- 6.3 Statistical Properties of Classical Field.- 6.3.1 First-Order Correlation Function.- 6.3.2 Second-Order Correlation Function.- 6.3.3 Higher-Order Correlations.- 6.3.4 Stable and Chaotic Fields.- 6.4 Statistical Properties of Quantized Field.- 6.4.1 First-Order Correlation.- 6.4.2 Second-Order Correlation.- 6.4.3 Quantized Coherent and Thermal Fields.- 6.5 Homodvned Detection.- 6.6 Spectrum.- 7. Atom-Field Interaction Hamiltonians.- 7.1 Dipole Interaction.- 7.2 Rotating Wave and Resonance Approximations.- 7.3 Two-Level Atom.- 7.4 Three-Level Atom.- 7.5 Effective Two-Level Atom.- 7.6 Multi-channel Models.- 7.7 Parametric Processes.- 7.8 Cavity QED.- 7.9 Moving Atom.- 8. Quantum Theory of Damping.- 8.1 The Master Equation.- 8.2 Solving a Master Equation.- 8.3 Multi-Time Average of System Operators.- 8.4 Bath of Harmonic Oscillators.- 8.4.1 Thermal Reservoir.- 8.4.2 Squeezed Reservoir.- 8.4.3 Reservoir of the Electromagnetic Field.- 8.5 Master Equation for a Harmonic Oscillator.- 8.6 Master Equation for Two-Level Atoms.- 8.6.1 Two-Level Atom in a Monochromatic Field.- 8.6.2 Collisional Damping.- 8.7 aster Equation for a Three-Level Atom.- 8.8 Master Equation for Field Interacting with a Reservoir of Atoms.- 9. Linear and Nonlinear Response of a System in an External Field.- 9.1 Steady State of a System in an External Field.- 9.2 Optical Susceptibility.- 9.3 Rate of Absorption of Energy.- 9.4 Response in a Fluctuating Field.- 10. Solution of Linear Equations: Method of Eigenvector Expansion.- 10.1 Eigenvalues and Eigenvectors.- 10.2 Generalized Eigenvalues and Eigenvectors.- 10.3 Solution of Two-Term Difference-Differential Equation.- 10.4 Exactly Solvable Two- and Three-Term Recursion Relations.- 10.4.1 Two-Term Recursion Relations.- 10.4.2 Three-Term Recursion Relations.- 11. Two-Level and Three-Level Hamiltonian Systems.- 11.1 Exactly Solvable Two-Level Systems.- 11.1.1 Time-Independent Detuning and Coupling.- 11.1.2 On-Resonant Real Time-Dependent Coupling.- 11.1.3 Fluctuating Coupling.- 11.2 N Two-Level Atoms in a Quantized Field.- 11.3 Exactly Solvable Three-Level Systems.- 11.4 Effective Two-Level Approximation.- 12. Dissipative Atomic Systems.- 12.1 Two-Level Atom in a Quasimonochromatic Field.- 12.1.1 Time-Dependent Evolution Operator Reducible to SU(2).- 12.1.2 Time-Independent Evolution Operator.- 12.1.3 Nonlinear Response in a Bichromatic Field.- 12.2 N Two-Level Atoms in a Monochromatic Field.- 12.3 Two-Level Atoms in a Fluctuating Field.- 12.4 Driven Three-Level Atom.- 13. Dissipative Field Dynamics.- 13.1 Down-Conversion in a Damped Cavity.- 13.1.1 Averages and Variances of the Cavity Field Operators.- 13.1.2 Density Matrix.- 13.2 Field Interacting with a Two-Photon Reservoir.- 13.2.1 Two-Photon Absorption.- 13.2.2 Two-Photon Generation and Absorption.- 13.3 Reservoir in the Lambda Configuration.- 14. Dissipative Cavity QED.- 14.1 Two-Level Atoms in a Single-Mode Cavity.- 14.2 Strong Atom-Field Coupling.- 14.2.1 Single Two-Level Atom.- 14.3 Response to an External Field.- 14.3.1 Linear Response to a Monochromatic Field.- 14.3.2 Nonlinear Response to a Bichromatic Field.- 14.4 The Micromaser.- 14.4.1 Density Operator of the Field.- 14.4.2 Two-Level Atomic Micromaser.- 14.4.3 Atomic Statistics.- Appendices.- A. Some Mathematical Formulae.- B. Hypergeometric Equation.- C. Solution of Twoand Three-Dimensional Linear Equations.- D. Roots of a Polynomial.- References.
「Nielsen BookData」 より