Solid-state lasers for materials processing : fundamental relations and technical realizations
Author(s)
Bibliographic Information
Solid-state lasers for materials processing : fundamental relations and technical realizations
(Springer series in optical sciences, v. 77)
Springer, c2001
- Other Title
-
Festkörperlaser zur Materialbearbeitung
- Uniform Title
-
Festkörperlaser zur Materialbearbeitung
Available at 11 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical reference(p.[329]-345) and index
Description and Table of Contents
Description
From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News
Table of Contents
I Theoretical Background.- 1 Fundamentals of Solid-State Lasers.- 1.1 Energy-Level Diagram and Rate Equations.- 1.2 Amplifiers.- 1.3 Oscillator in the Stationary Case.- 1.4 Threshold and Losses.- 1.5 Influence of the Temperature.- 1.6 Oscillator in Pulsed Operation.- 1.7 Q-switch Operation.- 1.8 The 3-Level System.- 1.9 Efficiency and Optimization.- 2 Gaussian Optics.- 2.1 Gaussian Beam.- 2.2 Higher Order Modes.- 2.3 ABCD Law.- 2.4 Sign Conventions.- 2.5 Matrices of Optical Elements.- 2.6 Application of the ABCD Law.- 3 Resonators.- 3.1 Stable Resonators.- 3.2 Empty Resonators.- 3.3 Conventional Stable Resonators.- 3.4 Special Resonators with Two External Mirrors.- 3.5 Multicavity Resonators.- 3.6 Alignment Sensitivity of Stable Resonators.- 3.7 Unstable Resonators.- 4 Thermal Effects.- 4.1 Heat Efficiency.- 4.2 Temperature Profile.- 4.3 Transient Thermal Effects.- 4.4 Thermal Load.- 4.5 Influence on the Level Population.- 4.6 Thermal Lensing.- 4.7 Lens Effects in the Resonator.- 4.8 Experimental Determination of the Refracting Power.- 4.9 Thermally Invariant Resonators.- II Technical Realization.- 5 Beam Source.- 5.1 Pumping Cavity for Rods.- 5.2 Pumping Cavity for Slabs.- 5.3 Cooling.- 5.4 Cooling Unit.- 6 Gas Discharge Lamps.- 6.1 Ionization for Flash and Arc Lamps.- 6.2 Expansion of the Plasma Arc (Booster Circuit).- 6.3 Voltage Current Characteristic.- 6.4 On- and Off-Switching Characteristics.- 6.5 Transient Progress.- 6.6 Lifetime.- 6.7 Spectral Characteristics.- 6.8 Radiation Characteristic.- 6.9 Recommendations for Operation.- 7 Excitation by Diodes.- 7.1 Concepts.- 7.2 Layout of the Laser Diodes.- 7.3 Semiconductor Materials.- 7.4 Technical Data of the Laser Diodes.- 7.5 Excitation of a Solid-State Laser.- 8 Electrical Circuits.- 8.1 Ignition Circuits.- 8.2 Power Supplies.- 8.3 Energy Storage.- 8.4 Power Modulation.- 9 Optics.- 9.1 Focusing Optics.- 9.2 Lens Aberrations.- 9.3 Scanning Systems.- 9.4 Beam Splitter.- 9.5 Beam Guiding by Fibers.- 9.6 Transformation of Constant Resonator Parameters.- 9.7 Laser-Induced Damage.- 10 Material Processing..- 10.1 Beam Parameters.- 10.2 Material Parameters.- 10.3 Application Parameters.- 10.4 Relations Between the Parameters.- 10.5 Measurement Procedures.- III Data and Specifications.- 11 Laser Materials.- 11.1 Parameter Specification.- 11.2 Active Ions.- 12 Laser Crystals.- 13 Laser Glasses.- 14 Material Data.- 14.1 Optical Transparent Media.- 14.2 Materials for Manufacturing.- 15 Tables and Constants.- 15.1 Conversion Tables.- 15.2 Special Conversions.- 15.3 Physical Constants.- 15.4 Mathematical Constants.- References.
by "Nielsen BookData"