Photonic analog-to-digital conversion
Author(s)
Bibliographic Information
Photonic analog-to-digital conversion
(Springer series in optical sciences, v. 81)
Springer, c2001
Available at 17 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [317]-325) and index
Description and Table of Contents
Description
Provides a comprehensive look at the application of photonic approaches to the problem of analog-to-digital conversion. It looks into the progress made to date, discusses present research, and presents a glimpse of potential future technologies.
Table of Contents
1. Introduction.- 1.1 The Role of A/D Conversion.- 1.2 Key Technological Challenges.- 1.3 Motivation for Photonic A/D Approaches.- 1.4 Organization of this Book.- 2. Performance Characteristics of Analog-to-Digital Converters.- 2.1 A/D Converter Characteristics.- 2.2 Sampling and Conversion Rate Characteristics.- 2.2.1 Sampling Rate.- 2.2.2 Conversion Rate.- 2.3 Performance Measures.- 2.3.1 Resolution.- 2.3.2 Dynamic Range, SQNR, and SNR Performance Measures..- 2.3.3 Spur-Free Dynamic Range.- 2.4 Performance Degradations.- 2.4.1 Two-Tone Intermodulation Distortion.- 2.4.2 Differential Nonlinearity.- 2.4.3 Integral Nonlinearity.- 2.4.4 Comparator Hysteresis.- 2.4.5 Thermal Noise.- 2.16 Aperture Jitter.- 2.4.7 Comparator Ambiguity.- 2.4.8 Observations.- Summary.- 3. Approaches to Analog-to-Digital Conversion.- 3.1 A/D Converter Coding Schemes.- 3.1.1 Thermometer Coding Scheme.- 3.1.2 Gray Code Coding Scheme.- 3.1.3 Circular Coding Scheme.- 3.2 Nyquist-Rate Converter Architectures.- 3.2.1 Fully Parallel or Flash A/D Conversion.- 3.2.2 Subranging A/D Conversion.- 3.2.3 Folding Architectures.- 3.2.4 Other Parallel Architectures.- 3.2.5 Neural Network Approach to A/D Conversion..- 3.2.6 Full-Search A/D Conversion.- 3.2.7 Successive Approximation A/D Conversion.- 3.3 Oversampled A/D Conversion.- 3.3.1 The Modulator.- 3.3.2 Operation.- 3.3.3 The Digital Postprocessor.- 3.3.4 Oversampled A/D Performance.- 3.4 Parallel Oversampling A/D Conversion.- Summary.- 4. Photonic Devices for Analog-to-Digital Conversion.- 4.1 Mach-Zehnder Interferometers.- 4.2 Optical Waveguide Switches.- 4.2.1 Directional Coupler Waveguide Switches.- 4.2.2 Reversed ?? Directional Coupler..- 4.2.3 Digital Optical Waveguide Switches.- 4.3 Acousto-Optic Devices.- 4.4 Multiple Quantum Well Devices.- 4.4.1 Optical Bistability.- 4.4.2 Optical Subtraction.- 4.4.3 Switching Speed and Energy Requirements.- 4.5 Smart Pixel Technology.- 4.5.1 Monolithic Integration.- 4.5.2 Direct Epitaxy.- 4.5.3 Hybrid Integration.- Summary.- 5. Nyquist-Rate Photonic Analog-to-Digital Conversion.- 5.1 Electro-Optic A/D Conversion Based on a Mach-Zehnder Interferometer.- 5.2 Optical Folding-Flash A/D Converter.- 5.3 Matrix-Multiplication and Beam Deflection.- 5.4 Other Approaches to Photonic A/D Conversion.- Summary.- 6. Oversampled Photonic Analog-to-Digital Conversion.- 6.1 Oversampling Photonic A/D Conversion.- 6.2 Optical Oversampled Modulators.- 6.2.1 The Interferometric Modulator.- 6.2.2 The Noninterferometric Modulator.- 6.3 The Digital Postprocessor.- 6.3.1 Electronic Postprocessing.- 6.3.2 Optoelectronic Postprocessing.- 6.3.3 Observations.- 6.4 Performance Analysis.- 6.4.1 Linear Arithmetic Errors.- 6.4.2 Quantization Noise Spectra.- 6.4.3 Cascade Error Tolerances..- 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration.- 6.5.1 Noninterferometric Optical Subtraction.- 6.5.2 Experimental Photonic First-Order Oversampled Modulator.- Summary.- 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halftoning.- 7.1 Introduction.- 7.2 Approaches to Halftoning.- 7.3 The Error Diffusion Algorithm.- 7.4 Neural Network Formalism.- 7.4.1 The Hopfield-Type Neural Network.- 7.4.2 Observations.- 7.5 The Error Diffusion Neural Network.- 7.5.1 The Error Diffusion Filter.- 7.5.2 Observations.- 7.6 Quantitative Performance Metrics.- 7.6.1 Power Spectrum Estimation.- 7.6.2 Radially Averaged Power Spectra and Anisotropy.- 7.7 Performance Analysis.- 7.7.1 Floyd-Steinberg Performance Analysis.- 7.7.2 Symmetric Jarvis Performance Analysis.- 7.7.3 Error Diffusion Neural Network Performance Analysis.- 7.8 Extensions to Color.- Summary.- 8. A Photonic-Based Error Diffusion Neural Network.- 8.1 First-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2.1 Detailed Circuit Description.- 8.2.2 Modeling and Simulation.- 8.2.3 Experimental Performance..- 8.2.4 Observations.- 8.3 OPTOCHIP: A 2-D Neural Array Employing Epitaxy-on-Electronics.- 8.3.1 The OPTOCHIP Project.- 8.3.2 Description of Device Architecture.- 8.3.3 Observations.- 8.4 Extensions: A Photonic Error Diffusion Filter.- 8.4.1 Design of the Diffractive Optical Filter.- 8.4.2 Fabrication Error Analysis..- 8.4.3 Experimental Characterization.- 8.4.4 Impact of Fabrication Errors on Halftoning Performance.- Summary.- 9. Photonic A/D Conversion Based on a Fully Connected Distributed Mesh Feedback Architecture.- 9.1 Temporal and Spatial Error Diffusion.- 9.1.1 Spectral Noise Shaping Duality.- 9.1.2 Postprocessing Duality.- 9.1.3 Limit Cycle Oscillation Duality.- 9.1.4 Observations.- 9.2 Spatially Distributed Oversampled A/D Conversion..- 9.3 A 2-D Fully Connected Distributed Mesh Feedback Architecture.- 9.3.1 Mismatch Effects in the Fully Connected Distributed Mesh Feedback Architecture.- 9.4 A/D Conversion Using Spatial Oversampling and Error Diffusion.- 9.4.1 Temporal-to-Spatial Conversion.- 9.4.2 The Two-Dimensional Error Diffusion Neural Network.- 9.4.3 The Postprocessor.- 9.4.4 Spectral Noise Shaping.- 9.4.5 Observations.- 9.5 Three-Dimensional Extensions.- 9.5.1 Space-Time Processing Architectures.- Summary.- 10. Trends in Photonic Analog-to-Digital Conversion.- 10.1 Time-Interleaving A/D Converter Architectures.- 10.1.1 Understanding Time-Interleaved Architectures.- 10.1.2 Mismatch Effects in Time-Interleaved Architectures.- 10.1.3 Block Filter Description of Time-Interleaving.- 10.2 Photonic Channelized A/D Architectures.- 10.2.1 Optical Time-Division Demultiplexing Architectures.- 10.2.2 Wavelength Channelization Architectures.- 10.3 Time-Stretching Using Dispersive Optical Elements.- 10.4 Ultra-Fast Laser Sources with Low Jitter.- 10.5 Novel Optical Sampling Techniques.- 10.6 Broadband Optical Modulators and Switches.- Summary.- References.
by "Nielsen BookData"