Photonic analog-to-digital conversion

Author(s)

    • Shoop, Barry L.

Bibliographic Information

Photonic analog-to-digital conversion

Barry L. Shoop

(Springer series in optical sciences, v. 81)

Springer, c2001

Available at  / 17 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. [317]-325) and index

Description and Table of Contents

Description

Provides a comprehensive look at the application of photonic approaches to the problem of analog-to-digital conversion. It looks into the progress made to date, discusses present research, and presents a glimpse of potential future technologies.

Table of Contents

1. Introduction.- 1.1 The Role of A/D Conversion.- 1.2 Key Technological Challenges.- 1.3 Motivation for Photonic A/D Approaches.- 1.4 Organization of this Book.- 2. Performance Characteristics of Analog-to-Digital Converters.- 2.1 A/D Converter Characteristics.- 2.2 Sampling and Conversion Rate Characteristics.- 2.2.1 Sampling Rate.- 2.2.2 Conversion Rate.- 2.3 Performance Measures.- 2.3.1 Resolution.- 2.3.2 Dynamic Range, SQNR, and SNR Performance Measures..- 2.3.3 Spur-Free Dynamic Range.- 2.4 Performance Degradations.- 2.4.1 Two-Tone Intermodulation Distortion.- 2.4.2 Differential Nonlinearity.- 2.4.3 Integral Nonlinearity.- 2.4.4 Comparator Hysteresis.- 2.4.5 Thermal Noise.- 2.16 Aperture Jitter.- 2.4.7 Comparator Ambiguity.- 2.4.8 Observations.- Summary.- 3. Approaches to Analog-to-Digital Conversion.- 3.1 A/D Converter Coding Schemes.- 3.1.1 Thermometer Coding Scheme.- 3.1.2 Gray Code Coding Scheme.- 3.1.3 Circular Coding Scheme.- 3.2 Nyquist-Rate Converter Architectures.- 3.2.1 Fully Parallel or Flash A/D Conversion.- 3.2.2 Subranging A/D Conversion.- 3.2.3 Folding Architectures.- 3.2.4 Other Parallel Architectures.- 3.2.5 Neural Network Approach to A/D Conversion..- 3.2.6 Full-Search A/D Conversion.- 3.2.7 Successive Approximation A/D Conversion.- 3.3 Oversampled A/D Conversion.- 3.3.1 The Modulator.- 3.3.2 Operation.- 3.3.3 The Digital Postprocessor.- 3.3.4 Oversampled A/D Performance.- 3.4 Parallel Oversampling A/D Conversion.- Summary.- 4. Photonic Devices for Analog-to-Digital Conversion.- 4.1 Mach-Zehnder Interferometers.- 4.2 Optical Waveguide Switches.- 4.2.1 Directional Coupler Waveguide Switches.- 4.2.2 Reversed ?? Directional Coupler..- 4.2.3 Digital Optical Waveguide Switches.- 4.3 Acousto-Optic Devices.- 4.4 Multiple Quantum Well Devices.- 4.4.1 Optical Bistability.- 4.4.2 Optical Subtraction.- 4.4.3 Switching Speed and Energy Requirements.- 4.5 Smart Pixel Technology.- 4.5.1 Monolithic Integration.- 4.5.2 Direct Epitaxy.- 4.5.3 Hybrid Integration.- Summary.- 5. Nyquist-Rate Photonic Analog-to-Digital Conversion.- 5.1 Electro-Optic A/D Conversion Based on a Mach-Zehnder Interferometer.- 5.2 Optical Folding-Flash A/D Converter.- 5.3 Matrix-Multiplication and Beam Deflection.- 5.4 Other Approaches to Photonic A/D Conversion.- Summary.- 6. Oversampled Photonic Analog-to-Digital Conversion.- 6.1 Oversampling Photonic A/D Conversion.- 6.2 Optical Oversampled Modulators.- 6.2.1 The Interferometric Modulator.- 6.2.2 The Noninterferometric Modulator.- 6.3 The Digital Postprocessor.- 6.3.1 Electronic Postprocessing.- 6.3.2 Optoelectronic Postprocessing.- 6.3.3 Observations.- 6.4 Performance Analysis.- 6.4.1 Linear Arithmetic Errors.- 6.4.2 Quantization Noise Spectra.- 6.4.3 Cascade Error Tolerances..- 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration.- 6.5.1 Noninterferometric Optical Subtraction.- 6.5.2 Experimental Photonic First-Order Oversampled Modulator.- Summary.- 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halftoning.- 7.1 Introduction.- 7.2 Approaches to Halftoning.- 7.3 The Error Diffusion Algorithm.- 7.4 Neural Network Formalism.- 7.4.1 The Hopfield-Type Neural Network.- 7.4.2 Observations.- 7.5 The Error Diffusion Neural Network.- 7.5.1 The Error Diffusion Filter.- 7.5.2 Observations.- 7.6 Quantitative Performance Metrics.- 7.6.1 Power Spectrum Estimation.- 7.6.2 Radially Averaged Power Spectra and Anisotropy.- 7.7 Performance Analysis.- 7.7.1 Floyd-Steinberg Performance Analysis.- 7.7.2 Symmetric Jarvis Performance Analysis.- 7.7.3 Error Diffusion Neural Network Performance Analysis.- 7.8 Extensions to Color.- Summary.- 8. A Photonic-Based Error Diffusion Neural Network.- 8.1 First-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2.1 Detailed Circuit Description.- 8.2.2 Modeling and Simulation.- 8.2.3 Experimental Performance..- 8.2.4 Observations.- 8.3 OPTOCHIP: A 2-D Neural Array Employing Epitaxy-on-Electronics.- 8.3.1 The OPTOCHIP Project.- 8.3.2 Description of Device Architecture.- 8.3.3 Observations.- 8.4 Extensions: A Photonic Error Diffusion Filter.- 8.4.1 Design of the Diffractive Optical Filter.- 8.4.2 Fabrication Error Analysis..- 8.4.3 Experimental Characterization.- 8.4.4 Impact of Fabrication Errors on Halftoning Performance.- Summary.- 9. Photonic A/D Conversion Based on a Fully Connected Distributed Mesh Feedback Architecture.- 9.1 Temporal and Spatial Error Diffusion.- 9.1.1 Spectral Noise Shaping Duality.- 9.1.2 Postprocessing Duality.- 9.1.3 Limit Cycle Oscillation Duality.- 9.1.4 Observations.- 9.2 Spatially Distributed Oversampled A/D Conversion..- 9.3 A 2-D Fully Connected Distributed Mesh Feedback Architecture.- 9.3.1 Mismatch Effects in the Fully Connected Distributed Mesh Feedback Architecture.- 9.4 A/D Conversion Using Spatial Oversampling and Error Diffusion.- 9.4.1 Temporal-to-Spatial Conversion.- 9.4.2 The Two-Dimensional Error Diffusion Neural Network.- 9.4.3 The Postprocessor.- 9.4.4 Spectral Noise Shaping.- 9.4.5 Observations.- 9.5 Three-Dimensional Extensions.- 9.5.1 Space-Time Processing Architectures.- Summary.- 10. Trends in Photonic Analog-to-Digital Conversion.- 10.1 Time-Interleaving A/D Converter Architectures.- 10.1.1 Understanding Time-Interleaved Architectures.- 10.1.2 Mismatch Effects in Time-Interleaved Architectures.- 10.1.3 Block Filter Description of Time-Interleaving.- 10.2 Photonic Channelized A/D Architectures.- 10.2.1 Optical Time-Division Demultiplexing Architectures.- 10.2.2 Wavelength Channelization Architectures.- 10.3 Time-Stretching Using Dispersive Optical Elements.- 10.4 Ultra-Fast Laser Sources with Low Jitter.- 10.5 Novel Optical Sampling Techniques.- 10.6 Broadband Optical Modulators and Switches.- Summary.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top