Markov random field modeling in image analysis

書誌事項

Markov random field modeling in image analysis

Stan Z. Li

(Computer science workbench)

Springer, 2001

  • : pbk

大学図書館所蔵 件 / 16

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation.This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

目次

Foreword by Anil K. Jain.- Introduction.- Low Level MRF Models.- Discontinuities in MRFs.- Discontinuity-Adaptivity Model and Robust Estimation.- High Level MRF Models.- MRF Parameter Estimation.- Parameter Estimation in Optimal Object Recognition.- Minimization -- Local Methods.- Minimization -- Global Methods.- References.- List of Notation.- Index.The complete table of contents can be found on the Internet:http://www.springer.de

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ