Wave propagation in viscoelastic and poroelastic continua : a boundary element approach
著者
書誌事項
Wave propagation in viscoelastic and poroelastic continua : a boundary element approach
(Lecture notes in applied mechanics / series editor Friedrich Pfeiffer, 2)
Springer, c2001
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [159]-168) and index
内容説明・目次
内容説明
Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.
目次
1. Introduction.- 2. Convolution quadrature method.- 2.1 Basic theory of the convolution quadrature method.- 2.2 Numerical tests.- 2.2.1 Series expansion of the test functions f1 and f2.- 2.2.2 Computing the integration weights ?n.- 2.2.3 Numerical convolution.- 3. Viscoelastically supported Euler-Bernoulli beam.- 3.1 Integral equation for a beam resting on viscoelastic foundation.- 3.1.1 Fundamental solutions.- 3.1.2 Integral equation.- 3.2 Numerical example.- 3.2.1 Fixed-simply supported beam.- 3.2.2 Fixed-free viscoelastic supported beam.- 4. Time domain boundary element formulation.- 4.1 Integral equation for elastodynamics.- 4.2 Boundary element formulation for elastodynamics.- 4.3 Validation of proposed method: Wave propagation in a rod.- 4.3.1 Influence of the spatial and time discretization.- 4.3.2 Comparison with the "classical" time domain BE formulation.- 5. Viscoelastodynamic boundary element formulation.- 5.1 Viscoelastic constitutive equation.- 5.2 Boundary integral equation.- 5.3 Boundary element formulation.- 5.4 Validation of the method and parameter study.- 5.4.1 Three-dimensional rod.- 5.4.2 Elastic foundation on viscoelastic half space.- 6. Poroelastodynamic boundary element formulation.- 6.1 Biot's theory of poroelasticity.- 6.1.1 Elastic skeleton.- 6.1.2 Viscoelastic skeleton.- 6.2 Fundamental solutions.- 6.3 Poroelastic Boundary Integral Formulation.- 6.3.1 Boundary integral equation.- 6.3.2 Boundary element formulation.- 6.4 Numerical studies.- 6.4.1 Influence of time step size and mesh size.- 6.4.2 Poroelastic half space.- 7. Wave propagation.- 7.1 Wave propagation in poroelastic one-dimensional column.- 7.1.1 Analytical solution.- 7.1.2 Poroelastic results.- 7.1.3 Poroviscoelastic results.- 7.2 Waves in half space.- 7.2.1 Rayleigh surface wave.- 7.2.2 Slow compressional wave in poroelastic half space.- 8. Conclusions - Applications.- 8.1 Summary.- 8.2 Outlook on further applications.- A. Mathematic preliminaries.- A.1 Distributions or generalized functions.- A.2 Convolution integrals.- A.3 Laplace transform.- A.4 Linear multistep method.- B. BEM details.- B.1 Fundamental solutions.- B.1.1 Visco- and elastodynamic fundamental solutions.- B.1.2 Poroelastodynamic fundamental solutions.- B.2 "Classical" time domain BE formulation.- Notation Index.- References.
「Nielsen BookData」 より