Handbook of VLSI microlithography : principles, technology, and applications
Author(s)
Bibliographic Information
Handbook of VLSI microlithography : principles, technology, and applications
(Materials science and process technology series)
Noyes Publications/William Andrew Pub., c2001
2nd ed
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This handbook gives readers a close look at the entire technology of printing very high resolution and high density integrated circuit (IC) patterns into thin resist process transfer coatingsuincluding optical lithography, electron beam, ion beam, and x-ray lithography. The book's main theme is the special printing process needed to achieve volume high density IC chip production, especially in the Dynamic Random Access Memory (DRAM) industry. The book leads off with a comparison of various lithography methods, covering the three major patterning parameters of line/space, resolution, line edge and pattern feature dimension control. The book's explanation of resist and resist process equipment technology may well be the first practical description of the relationship between the resist process and equipment parameters. The basics of resist technology are completely covereduincluding an entire chapter on resist process defectivity and the potential yield limiting effect on device production.Each alternative lithographic technique and testing method is considered and evaluated: basic metrology including optical, scanning-electron-microscope (SEM) techniques and electrical test devices, along with explanations of actual printing tools and their design, construction and performance. The editor devotes an entire chapter to today's sophisticated, complex electron-beam printers, and to the emerging x-ray printing technology now used in high-density CMOS devices. Energetic ion particle printing is a controllable, steerable technology that does not rely on resist, and occupies a final section of the handbook.
Table of Contents
Issues and Trends Affecting Lithography Tool Selection StrategyResist Technology: Design, Processing and ApplicationsLithography Process Monitoring and Defect DetectionTechniques and Tools for Photo MetrologyTechniques and Tools for Optical LithographyMicrolithography Tool AutomationElectron Beam ULSI ApplicationsRational Vibration and Structural Dynamics for Lithographic Tool InstallationsApplications of Ion Microbeam Lithography and Direct ProcessingX-Ray Lithography
by "Nielsen BookData"