Making, breaking codes : an introduction to cryptography
著者
書誌事項
Making, breaking codes : an introduction to cryptography
Prentice Hall, c2001
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 512-515) and index
内容説明・目次
内容説明
For courses in Cryptography, Cryptology, and Applications of Number Theory and Abstract Algebra.
This is the only undergraduate text to explain fundamental ideas of classical and modern cryptography, and provide the essential background in number theory, abstract algebra, and probability-with surveys of relevant parts of complexity theory. A level of linear algebra sophistication is assumed in the reader. A user-friendly, down-to-earth tone gives students concretely motivated introductions to all topics.
目次
Introduction.
1. Simple Ciphers.
The Shift Cipher. Reduction/Division Algorithm. The One-Time Pad. The Affine Cipher.
2. Probability.
Counting. Basic Ideas. Statistics of English. Attack on the Affine Cipher.
3. Permutations.
Cryptograms: Substitutions. Anagrams: Transpositions. Permutations. Shuffles. Block Interleavers.
4. A Serious Cipher.
The Vigenere Cipher. LCMs and GCDs. Kasiski Attack. Expected Values. Friedman Attack.
5. More Probability.
Generating Functions. Variance, Standard Deviation. Chebycheff's Inequality. Law of Large Numbers.
6. Modern Symmetric Ciphers.
Design Goals. Data Encryption Standard. Advanced Encryption Standard.
7. The Integers.
Divisibility. Unique Factorization. Euclidean Algorithm. Multiplicative Inverses. Computing Inverses. Equivalence Relations. The Integers mod m. Primitive Roots, Discrete Logs.
8. The Hill Cipher.
Hill Cipher Operation. Hill Cipher Attacks.
9. Complexity.
Big-Oh/Little-Oh Notation. Bit Operations. Probabilistic Algorithms. Comlexity. Subexponential Algorithms. Kolmogorov Complexity. Linear Complexity. Worst-Case versus Expected.
10. Public-Key Ciphers.
Trapdoors. The RSA Cipher. Diffie-Hellman Key Exchange. ElGamal Cipher. Knapsack Ciphers. NTRU Cipher. Arithmetica Key Exchange. Quantum Cryptography. U.S. Export Regulations.
11. Prime Numbers.
Euclid's Theorem. Prime Number Theorem. Primes in Sequences. Chebycheff's Theorem. Sharpest Asymptotics. Riemann Hypothesis.
12. Roots Mod p .
Fermat's Little Theorem. Factoring Special Expressions. Mersenne Numbers. More Examples. Exponentiation Algorithm. Square Roots mod p. Higher Roots mod p.
13. Roots Mod Composites.
Sun Ze's Theorem. Special Systems. Composite Moduli. Hensel's Lemma. Square-Root Oracles. Euler's Theorem. Facts about Primitive Roots. Euler's Criterion.
14. Weakly Multiplicativity.
Weak Multiplicativity. Arithmetic Convolutions. Moebius Inversion.
15. Quadratic Reciprocity.
Square Roots. Quadratic Symbols. Multiplicative Property. Quadratic Reciprocity. Fast Computation.
16. Pseudoprimes.
Fermat Pseudoprimes. Non-Prime Pseudoprimes. Euler Pseudoprimes. Solovay-Strassen Test. Strong Pseudoprimes. Miller-Rabin Test.
17. Groups.
Groups. Subgroups. Langrange's Theorem. Index of a Subgroup. Laws of Exponents. Cyclic Subgroups. Euler's Theorem. Exponents of Groups.
18. Sketches of Protocols.
Basic Public-Key Protocol. Diffie-Hellman Key Exchange. Secret Sharing. Oblivious Transfer. Zero-Knowledge Proofs. Authentication. e-Money, e-Commerce.
19. Rings, Fields, Polynomials.
Rings, Fields. Divisibility. Polynomial Rings. Euclidean Algorithm. Euclidean Rings.
20. Cyclotomic Polynomials.
Characteristics. Multiple Factors. Cyclotomic Polynomials. Primitive Roots. Primitive Roots mod p. Prime Powers. Counting Primitive Roots. Non-Existence. Search Algorithm.
21. Random Number Generators.
Fake One-Time Pads. Period of a pRNG. Congruential Generators. Feedback Shift Generators. Blum-Blum-Shub Generator. Naor-Reingold Generator. Periods of LCGs. Primitive Polynomials. Periods of LFSRs. Examples of Primitives. Testing for Primitivity.
22. More on Groups.
Group Homomorphisms. Finite Cyclic Groups. Infinite Cyclic Groups. Roots and Powers in Groups. Square Root Algorithm.
23. Pseudoprimality Proofs.
Lambda Function. Carmichael Numbers. Euler Witnesses. Strong Witnesses.
24. Factorization Attacks.
Pollard's Rho Method. Pollard's p-1 Method. Pocklington-Lehmer Criterion. Strong Primes. Primality Certificates.
25. Modern Factorization Attacks.
Gaussian Elimination. Random Squares Factoring. Dixon's Algorithm. Non-Sieving Quadratic Sieve. The Quadratic Sieve. Other Improvements.
26. Finite Fields.
Making Finite Fields. Examples of Field Extensions. Addition mod P. Multiplication mod P. Multiplicative Inverses mod P.
27. Discrete Logs.
Baby-Step Giant-Step. Pollard's Rho Method. The Index Calculus.
28. Elliptic Curves.
Abstract Discrete Logarithms. Discrete Log Ciphers. Elliptic Curves. Points at Infinity. Projective Elliptic Curves.
29. More on Finite Fields.
Ideals in Commutative Rings. Ring Homomorphisms. Quotient Rings. Maximal Ideals and Fields. More on Field Extensions. Frobenius Automorphism. Counting Irreducibles. Counting Primitives.
Appendices.
Sets and Functions. Searching, Sorting. Vectors. Matrices. Stirling's Formula.
Tables.
Factorizations under 600. Primes below 10,000. Primitive Roots under 100.
Bibliography.
Answers to Selected Exercises.
Index.
「Nielsen BookData」 より