Causality : models, reasoning, and inference

書誌事項

Causality : models, reasoning, and inference

Judea Pearl

Cambridge University Press, 2001

Repr. with corrections

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 359-373) and indexes

内容説明・目次

内容説明

Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.

目次

  • 1. Introduction to probabilities, graphs, and causal models
  • 2. A theory of inferred causation
  • 3. Causal diagrams and the identification of causal effects
  • 4. Actions, plans, and direct effects
  • 5. Causality and structural models in the social sciences
  • 6. Simpson's paradox, confounding, and collapsibility
  • 7. Structural and counterfactual models
  • 8. Imperfect experiments: bounds and counterfactuals
  • 9. Probability of causation: interpretation and identification
  • Epilogue: the art and science of cause and effect.

「Nielsen BookData」 より

詳細情報
  • NII書誌ID(NCID)
    BA53611491
  • ISBN
    • 9780521773621
  • LCCN
    99042108
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xvi, 384 p.
  • 大きさ
    27 cm
  • 分類
  • 件名
ページトップへ