Causality : models, reasoning, and inference
著者
書誌事項
Causality : models, reasoning, and inference
Cambridge University Press, 2001
Repr. with corrections
並立書誌 全1件
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 359-373) and indexes
内容説明・目次
内容説明
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.
目次
- 1. Introduction to probabilities, graphs, and causal models
- 2. A theory of inferred causation
- 3. Causal diagrams and the identification of causal effects
- 4. Actions, plans, and direct effects
- 5. Causality and structural models in the social sciences
- 6. Simpson's paradox, confounding, and collapsibility
- 7. Structural and counterfactual models
- 8. Imperfect experiments: bounds and counterfactuals
- 9. Probability of causation: interpretation and identification
- Epilogue: the art and science of cause and effect.
「Nielsen BookData」 より